本文目标
Flink消费DBZ推送到Kafka的JSON数据,存入PostgreSQL
创建kafka的映射表
CREATE TABLE t1_kafka (
f1 BIGINT NOT NULL,
f2 STRING,
f3 TIMESTAMP(0) METADATA FROM 'value.source.timestamp' VIRTUAL,
PRIMARY KEY(f1) NOT ENFORCED
) WITH (
'connector' = 'kafka',
'topic' = 'yyx.test.t1',
'properties.bootstrap.servers' = '127.0.0.1:9092',
'scan.startup.mode' = 'earliest-offset',
'debezium-json.schema-include' = 'false',
'properties.group.id' = 'gyyx',
'format' = 'debezium-json'
);
select * from t1_kafka;
创建postgresql的映射表
CREATE TABLE t1_pg (
f1 BIGINT NOT NULL,
f2 STRING,
f3 TIMESTAMP(0),
PRIMARY KEY(f1) NOT ENFORCED
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:postgresql://127.0.0.1:6432/test',
'username' = 'test',
'password' = 'test',
'driver' = 'org.postgresql.Driver',
'table-name' = 't1'
);
select * from t1_pg;
创建从kafka到postgresql同步数据的任务
insert into t1_pg(f1, f2, f3) select f1, f2, f3 from t1_kafka;
测试验证
人工修改mysql内的t1表数据,查询postgresql表内的数据是否实时同步
原理如下:
MySQL-DBZ-Kafka-Flink-Postgresql