| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 3462 | Accepted: 1294 |
Description
WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:
- p, q, r, s, and t are WFFs
- if w is a WFF, Nw is a WFF
- if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.
- p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).
- K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below.
| Definitions of K, A, N, C, and E |
| w x | Kwx | Awx | Nw | Cwx | Ewx |
| 1 1 | 1 | 1 | 0 | 1 | 1 |
| 1 0 | 0 | 1 | 0 | 0 | 0 |
| 0 1 | 0 | 1 | 1 | 1 | 0 |
| 0 0 | 0 | 0 | 1 | 1 | 1 |
A tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example, ApNp is a tautology because it is true regardless of the value of p. On the other hand, ApNq is not, because it has the value 0 for p=0, q=1.
You must determine whether or not a WFF is a tautology.
Input
Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing 0 follows the last case.
Output
For each test case, output a line containing tautology or not as appropriate.
Sample Input
ApNp ApNq 0
Sample Output
tautology not
Source
开始的时候很没头绪,后来看了一些解题报告,略懂。
因为每个表达式都要符合他自己的规则的,所以从前往后就可以了,就是不会出现一些AXAXAXAX这种
采用的还是递归的形式,递归的确很强大
还有就是位运算吗,因为只有5个变量,并且只有可能0,1取值
所以用5个位去变换他即可
#include<iostream>
#include<string>
#include<cctype>
using namespace std;
int val;
string s;
int eval(int &x)
{
char ch=s[x++];
if(islower(ch)) return (val>>(ch-'p'))&1;//5位上的数表示相应的+,—
if(ch=='N') return !eval(x);
int v1=eval(x) ,v2=eval(x);
if(ch=='K') return v1&v2;
if(ch=='A') return v1|v2;
if(ch=='C') return !v1|v2;
if(ch=='E') return v1==v2;
}
int main()
{
int x;
while(cin>>s&&s!="0")
{
for(val=0;val<32;val++)
if(!eval(x=0)) break;
if(val<32) cout<<"not/n";
else cout<<"tautology/n";
}
return 0;
}
本文介绍了一种通过递归和位运算判断逻辑公式是否为重言式的算法。该方法适用于包含逻辑变量及逻辑运算符的表达式,通过对所有变量取值的可能性进行遍历,验证给定的逻辑公式在所有情况下是否恒为真。
908

被折叠的 条评论
为什么被折叠?



