A Pair of Graphs
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 357 Accepted Submission(s): 184
a) Add an arbitrary edge (x, y), provided that (x, y) does not exist before such an operation. Such an operation costs I A and I B on two graphs, respectively.
b) Delete an existing edge (x, y), which costs D A and D B on two graphs,respectively.
Each test case starts with three integers, N, M A and M B, ( 1 ≤ N ≤ 8, 0 ≤ M B ,M A ≤ N*(N-1)/2 ), the total number of vertexes, the number of edges in graph A,and the number of edges in graph B, respectively. Four integers I A, I B, D A, and D B come next, (0 ≤ I A, I B, D A, D B ≤ 32767 ), representing the costs as stated in the problem description. The next M A + M B lines describe the edges in graph A followed by those in graph B. Each line consists of exactly two integers, X and Y ( X ≠ Y , 0 ≤ X,Y < N).
Two successive test cases are separated by a blank line. A case with N = 0, M A = 0,and M B = 0 indicates the end of the input file, and should not be processed by your program.
1 0 0 1 2 3 7 4 2 3 1 6 5 1 0 1 0 3 0 2 1 2 1 0 0 0 0
Case #1: 0 Case #2: 1
算法分析
这是图的构造问题。首先先构造好图,点与点是否存在通路,两个数组A,B分别拿来保存是否存在通路,接着用深度搜索出所有可能,对,就是穷搜所有可能性,再查看是否满足条件,由于N<=8,最大不过是8!*N*N,不是特别大了,最大经过一些剪枝,讲时间降到了0.29秒。
#include<stdio.h>
#include<string.h>
bool a[9][9],b[9][9],used[9];
int n,ma,mb,ia,ib,da,db,ii,dd,num,list[9];
int min(int a,int b)
{
if(a>b) return b;
return a;
}
void dfs(int k) //由于N小于等于8,所以可以使用穷搜,为N!,8!= 40320,很小
{
int i,j,num2=0;
if(k==n)
{
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
if(a[list[i]][list[j]]==b[i][j]) continue;
if(a[list[i]][list[j]])
num2+=dd;//存在A中边不存在B中边说明要么A减少要么B增加
else
num2+=ii;//存在B中边不存在A中边说明要么B减少要么A增加
}
if(num>num2) num=num2;
return;
}
else
for(i=0;i<n;i++)
if(!used[i])
{
list[k]=i;
used[i]=true;
dfs(k+1);
used[i]=false;
}
}
int main()
{
int i,j,x,y,count=0;
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
while(scanf("%d%d%d",&n,&ma,&mb)!=EOF)
{
scanf("%d%d%d%d",&ia,&ib,&da,&db);
ii=min(ia,db);//增加A和减少B是等价的,因为我们是以A为研究对象,逐步构成成为B
dd=min(ib,da);//增加B和减少A是等价的
if(n==0&&ma==0&&mb==0) break;
memset(a,false,sizeof(a));
memset(b,false,sizeof(b));
memset(used,false,sizeof(used));
for(i=1;i<=ma;i++)
{
scanf("%d%d",&x,&y);
a[x][y]=a[y][x]=true;
}
for(i=1;i<=mb;i++)
{
scanf("%d%d",&x,&y);
b[x][y]=b[y][x]=true;
}
num=1<<25;
dfs(0);
printf("Case #%d: %d/n",++count,num/2);
}
return 0;
}
改进版,时间从0.50到了0.29,快了很多
#include<stdio.h>
bool a[9][9],b[9][9],used[9];
int n,ma,mb,ia,ib,da,db,ii,dd,num,list[9];
int min(int a,int b)
{
if(a>b) return b;
return a;
}
void dfs(int k) //由于N小于等于8,所以可以使用穷搜,为N!,8!= 40320,很小
{
int i,j,num2=0;
if(k==n)
{
for(i=0;i<n;i++)
for(j=i+1;j<n;j++)//这个的改变速度变化很大
{
if(a[list[i]][list[j]]==b[i][j]) continue;
if(a[list[i]][list[j]])
num2+=dd;//存在A中边不存在B中边说明要么A减少要么B增加
else
num2+=ii;//存在B中边不存在A中边说明要么B减少要么A增加
}
if(num>num2) num=num2;
return;
}
else
for(i=0;i<n;i++)
if(!used[i])
{
list[k]=i;
used[i]=true;
dfs(k+1);
used[i]=false;
}
}
int main()
{
int i,j,x,y,count=0;
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
while(scanf("%d%d%d",&n,&ma,&mb)!=EOF)
{
scanf("%d%d%d%d",&ia,&ib,&da,&db);
ii=min(ia,db);//增加A和减少B是等价的,因为我们是以A为研究对象,逐步构成成为B
dd=min(ib,da);//增加B和减少A是等价的
if(n==0&&ma==0&&mb==0) break;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
a[i][j]=false;
b[i][j]=false;
}
used[i]=false;
}
for(i=1;i<=ma;i++)
{
scanf("%d%d",&x,&y);
a[x][y]=a[y][x]=true;
}
for(i=1;i<=mb;i++)
{
scanf("%d%d",&x,&y);
b[x][y]=b[y][x]=true;
}
num=1<<25;
dfs(0);
printf("Case #%d: %d/n",++count,num);
}
return 0;
}
本文介绍了一种通过深度优先搜索解决图构造问题的方法,旨在找到使两个图等价所需的最小操作成本。通过调整搜索策略,将算法的时间复杂度显著降低。
362

被折叠的 条评论
为什么被折叠?



