1、Logistic回归:
1.1、逻辑回归数据集
[(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))] [ ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) , . . . , ( x ( m ) , y ( m ) ) ]
y∈{
0,1} y ∈ { 0 , 1 }
1.2、 样本发生的概率,即y取1的概率:
hθ(x)=11+exp(−θ⋅x) h θ ( x ) = 1 1 + e x p ( − θ ⋅ x )
1.3、整个样本的似然函数为:
- 似然函数
L=∏hθ(x(i))y(i)(1−hθ(x(i)))1−y(i) L = ∏ h θ ( x ( i ) ) y ( i ) ( 1 − h θ ( x ( i ) ) ) 1 − y ( i ) - 对数似然函数为:
logL=∑i=1m(y(i)log(hθ(x(i))+(1−y(i))log(1−hθ(x(i)))) l o g L = ∑ i = 1 m ( y ( i ) l o g ( h θ ( x ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) )
1.4、代价函数,及代价函数偏导:
- 代价函数
J(θ)=−1m∑i=1m(y(i)log(hθ(x(i))+(1−y(i))log(1−hθ(x(i)))) J ( θ ) = − 1 m ∑ i = 1 m ( y ( i ) l o g ( h θ ( x ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) ) - 代价函数的偏导数:
∂J(θ)∂θj=−1m(∑i=1m(y(i)−hθ(x(i)))x(i)) ∂ J ( θ ) ∂ θ j = − 1 m ( ∑ i = 1 m ( y ( i ) − h θ ( x ( i ) ) ) x ( i ) )
1.5、梯度下降更新参数:
θj:=:=θj−α∂J(θ)∂θjθj+αm(∑i=1m(y(i)−hθ(x(i)))x(i)j)(1)(2) (1) θ j := θ j − α ∂ J ( θ ) ∂ θ j (2) := θ j + α m ( ∑ i = 1 m ( y ( i ) − h θ ( x ( i ) ) ) x j ( i ) )
1.6、对参数L2正则化
- 对于逻辑回归,L2正则化之后,损失函