CodeForces 402E Strictly Positive Matrix

本文探讨了如何通过矩阵幂运算判断矩阵中元素是否全为正,并利用图论中的Tarjan算法判断矩阵构成的图是否为强连通分量。详细解释了从矩阵到图的转换方法,以及如何利用Tarjan算法进行强连通分量的判断。

题意:

一个矩阵a  问  a^k矩阵中是不是所有元素都是正的


思路:

将矩阵图化  正为1表示有路  0还是0表示无路  那么a^k中a[i][j]如果是+说明从i点有正好走k步就可以到达j点的路

如果整个矩阵都是+  说明任意两点可达  即整幅图强连通  因此tarjan判断强连通分量如果不是1就是NO

这里不用考虑步数问题  因为图中有自环


代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define M 2010

int maz[M][M],st[M],dfn[M],instack[M],low[M];
int n,cnt,top,idx;

template <class T>
inline void scan_d(T &ret) {
	char c; ret=0;
	while((c=getchar())<'0'||c>'9');
	while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
}

void tarjan(int u)
{
    int i,v;
    dfn[u]=low[u]=++idx;
    instack[u]=1;
    st[++top]=u;
    for(i=1;i<=n;i++)
    {
        if(!maz[u][i]) continue;
        v=i;
        if(dfn[v]==-1)
        {
            tarjan(v);
			low[u]=min(low[u],low[v]);
        }
        else if(instack[v]&&dfn[v]<low[u]) low[u]=dfn[v];
    }
    if(dfn[u]==low[u])
    {
        cnt++;
        do
        {
            v=st[top--];
            instack[v]=0;
        }while(u!=v);
    }
}

void solve()
{
    int i;
    top=cnt=idx=0;
    memset(dfn,-1,sizeof(dfn));
	memset(instack,0,sizeof(instack));
    for(i=1;i<=n;i++)
        if(dfn[i]==-1) tarjan(i);
}

int main()
{
    int i,j,k;
    scanf("%d",&n);
    for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
        {
            scan_d(k);
            if(k) maz[i][j]=1;
        }
    solve();
    if(cnt>1) printf("NO\n");
    else printf("YES\n");
    return 0;
}


### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值