此算法可以时间复杂度O(N),空间复杂度O(1)的遍历二叉树
算法流程:
1.首先cur指向根节点,判断是否有左子树,如果没有左子树则cur指向右子树
2.若有左子树,则找到其左子树的最右边的节点,判断此节点的右树是否指向cur节点(判断是第一次到还是第二次到),若指向空,将此节点的右树指向cur,并将cur移向左子树。若指向cur,则恢复成指向空。并将cur移向右子树
3.重复执行1到2步骤,直到cur指向空。
vector<char> Morris(TreeNode *root)
{
vector<char> res;
if (root == NULL)
return{};
TreeNode *cur = root;
TreeNode *MostRight = NULL;
while (cur != NULL)
{
res.push_back(cur->val);
if (cur->left != NULL)//会来到两次的节点
{
MostRight = cur->left;
while (MostRight->right != NULL&&MostRight->right!=cur)
{
MostRight = MostRight->right;
}
if (MostRight->right == NULL)//第一次来到此节点
{
MostRight->right = cur;
cur = cur->left;
}
else//第二次来到此节点
{
MostRight->right = NULL;
cur = cur->right;
}
}
else//只可能来一次的节点
{
cur = cur->right;
}
}
return res;
}
此流程会输出Morris序,有左子树的节点都会访问两次,其他节点一次。
若要实现先序遍历,则在每次第一次访问节点时输出即可。
#include<iostream>
#include<vector>
using namespace std;
struct TreeNode
{
char val;
TreeNode *left;
TreeNode *right;
TreeNode(int a):val(a),left(NULL),right(NULL){}
};
TreeNode *CreateTree(string s, int &index);
TreeNode *Buy_Node(int val);
vector<char> Morris(TreeNode *root);
int main()
{
string s = { "ABC#D#EF####GH##I#J##" };
int index = 0;
TreeNode *root = CreateTree(s, index);
vector<char> res = Morris(root);
}
TreeNode *CreateTree(string s,int &index)
{
if (s[index] == '#')
return NULL;
TreeNode *root = Buy_Node(s[index]);
root->left = CreateTree(s, ++index);
root->right = CreateTree(s, ++index);
return root;
}
TreeNode *Buy_Node(int val)
{
return new TreeNode(val);
}
vector<char> Morris(TreeNode *root)
{
vector<char> res;
if (root == NULL)
return{};
TreeNode *cur = root;
TreeNode *MostRight = NULL;
while (cur != NULL)
{
res.push_back(cur->val);
if (cur->left != NULL)//会来到两次的节点
{
MostRight = cur->left;
while (MostRight->right != NULL&&MostRight->right!=cur)
{
MostRight = MostRight->right;
}
if (MostRight->right == NULL)//第一次来到此节点
{
cout << cur->val;
MostRight->right = cur;
cur = cur->left;
}
else//第二次来到此节点
{
MostRight->right = NULL;
cur = cur->right;
}
}
else//只可能来一次的节点
{
cout << cur->val;
cur = cur->right;
}
}
return res;
}
若想中序遍历,则遇到需要访问两次的节点,第二次访问的时候输出,只会访问一次的节点,直接输出。
#include<iostream>
#include<vector>
using namespace std;
struct TreeNode
{
char val;
TreeNode *left;
TreeNode *right;
TreeNode(int a):val(a),left(NULL),right(NULL){}
};
TreeNode *CreateTree(string s, int &index);
TreeNode *Buy_Node(int val);
vector<char> Morris(TreeNode *root);
int main()
{
string s = { "ABC#D#EF####GH##I#J##" };
int index = 0;
TreeNode *root = CreateTree(s, index);
vector<char> res = Morris(root);
}
TreeNode *CreateTree(string s,int &index)
{
if (s[index] == '#')
return NULL;
TreeNode *root = Buy_Node(s[index]);
root->left = CreateTree(s, ++index);
root->right = CreateTree(s, ++index);
return root;
}
TreeNode *Buy_Node(int val)
{
return new TreeNode(val);
}
vector<char> Morris(TreeNode *root)
{
vector<char> res;
if (root == NULL)
return{};
TreeNode *cur = root;
TreeNode *MostRight = NULL;
while (cur != NULL)
{
res.push_back(cur->val);
if (cur->left != NULL)//会来到两次的节点
{
MostRight = cur->left;
while (MostRight->right != NULL&&MostRight->right!=cur)
{
MostRight = MostRight->right;
}
if (MostRight->right == NULL)//第一次来到此节点
{
MostRight->right = cur;
cur = cur->left;
}
else//第二次来到此节点
{
cout << cur->val;
MostRight->right = NULL;
cur = cur->right;
}
}
else//只可能来一次的节点
{
cout << cur->val;
cur = cur->right;
}
}
return res;
}
若想后序遍历则比较复杂,每次第二次访问节点时,就逆序输出此节点左节点的右边界。最后再逆序输出整个树的右边界
vector<char> Morris(TreeNode *root)
{
vector<char> res;
if (root == NULL)
return{};
TreeNode *cur = root;
TreeNode *MostRight = NULL;
while (cur != NULL)
{
res.push_back(cur->val);
if (cur->left != NULL)//会来到两次的节点
{
MostRight = cur->left;
while (MostRight->right != NULL&&MostRight->right!=cur)
{
MostRight = MostRight->right;
}
if (MostRight->right == NULL)//第一次来到此节点
{
MostRight->right = cur;
cur = cur->left;
}
else//第二次来到此节点
{
MostRight->right = NULL;
PrintRightEdge(cur->left);
cur = cur->right;
}
}
else//只可能来一次的节点
{
cur = cur->right;
}
}
PrintRightEdge(root);
return res;
}
TreeNode *reverse(TreeNode *head)
{
TreeNode *pre = NULL;
TreeNode *cur = head;
while (cur != NULL)
{
TreeNode *next = cur->right;
cur->right = pre;
pre = cur;
cur = next;
}
return pre;
}
void PrintRightEdge(TreeNode *head)
{
TreeNode *tail = reverse(head);
TreeNode *p = tail;
while (p!= NULL)
{
cout << p->val;
p = p->right;
}
reverse(tail);
}