题意:给定N个矩形,问这几个矩形把平面分割成几个部分。
虽然坐标可以达到10^6,但是由于矩形个数最多50个,将坐标离散化的话,纵坐标和横坐标最多就100个,再加上最外面一个我们假想的矩形(表示整个平面),假设有n个横坐标和m个纵坐标,把平面看作n*m个小方格,用原先矩形的边界对应的地方禁止通行,也就是把边界看作墙壁。问题就可以转化成连通分量个数的求解了。
代码中ban[i][j][k]表示在(i,j)的第k个方向有墙壁。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Reg{
int x1, y1, x2, y2;
}r[60];
int n, m, xm, ym;
int a[100], b[100];
int xl[4]={-1,1,0,0};
int yl[4]={0,0,-1,1};
bool ban[110][110][4];
bool vis[110][110];
void dfs(int x, int y){
for(int i=0; i<4; i++){
if(ban[x][y][i]) continue;
int a = x+xl[i];
int b = y+yl[i];
if(a<0 || a>=n || b<0 || b>=m) continue;
if(!vis[a][b]){
vis[a][b]=1;
dfs(a, b);
}
}
}
int main(){
while(~scanf("%d", &n) && n){
xm = ym = 0;
for(int i=0; i<n; i++){
scanf("%d %d %d %d", &r[i].x1, &r[i].y1, &r[i].x2, &r[i].y2);
a[xm++] = r[i].x1;
a[xm++] = r[i].x2;
b[ym++] = r[i].y1;
b[ym++] = r[i].y2;
}
sort(a, a+xm);
xm = unique(a, a+xm) - a;
sort(b, b+ym);
ym = unique(b, b+ym) - b;
memset(ban, 0, sizeof(ban));
for(int i=0; i<n; i++){
int sx = lower_bound(a, a+xm, r[i].x1) - a;
int ex = lower_bound(a, a+xm, r[i].x2) - a;
int ey = lower_bound(b, b+ym, r[i].y1) - b;
int sy = lower_bound(b, b+ym, r[i].y2) - b;
//printf("%d %d %d %d\n", sx, ex, sy, ey);
for(int j=sx+1; j<=ex; j++){
ban[ey][j][1] = ban[ey+1][j][0] = 1;
ban[sy+1][j][0] = ban[sy][j][1] = 1;
}
for(int j=sy+1; j<=ey; j++){
ban[j][sx+1][2] = ban[j][sx][3] = 1;
ban[j][ex][3] = ban[j][ex+1][2] = 1;
}
}
n = ym+1;
m = xm+1;
memset(vis, 0, sizeof(vis));
int ans = 0;
for(int i=0; i<n; i++){
for(int j=0; j<m; j++){
if(!vis[i][j]){
ans++;
vis[i][j] = 1;
dfs(i, j);
}
}
}
printf("%d\n", ans);
}
return 0;
}