To The Max
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 30 Accepted Submission(s) : 16
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle.
In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace
(spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will
be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
/*
题目大意:给定一个含有正数和负数的矩阵,求其子矩阵的和的最大值
一维的情况很简单,如何把一维的情况转化为二维情况呢?
例如,对于本题的测试数据:
我们可以每次任选几行,压缩成一行,这样就转化为了一维情况。
例如,我们求1~2行中的最大子矩阵:即矩阵高为2(1~2行),宽为1:4的矩阵,可以先把1~2行相加,得到9 0 -13 2,再求这个单行的最大子段,由此就可以求得1~2行的最大子矩阵。
*/
#include<stdio.h>
#include<string.h>
int max,n;
int map[105][105],b[105];
int dp()
{
int i,sum=0,m=-1000;
for(i=0;i<n;i++)
{
sum=sum+b[i];
if(sum<0) sum=0;
if(sum>m) m=sum;
}
return m;
}
int main()
{
int i,j,k,t,ans;
while(scanf("%d",&n)!=EOF)
{
for(i=0;i<n;i++)
for(j=0;j<n;j++)
scanf("%d",&map[i][j]);
max=0;//一开始没有初始化 没法和后面的比较大小啊 所以WA了 所以要注意也谢细节问题
for(i=0;i<n;i++)//从第几行开始
{
for(k=0;k<n;k++)//行数
{
if(i+k<n)
{
memset(b,0,sizeof(b));
for(t=i;t<=i+k;t++)
{
for(j=0;j<n;j++)
b[j]+=map[t][j];
}
ans=dp();
max=max>ans?max:ans;
}
}
}
printf("%d\n",max);
}
return 0;
}
下面的是一个高手的代码
#include<stdio.h>
#include<string.h>
int a[101][101],b[101];
int subsequencesum(int a[],int n)
{
int sum=0,maxsum=-0x7fffff,i;
for(i=1;i<=n;i++)
if(maxsum<a[i])
maxsum=a[i];
if(maxsum<=0)
return maxsum;
for(i=0;i<n;i++)
{
sum+=a[i+1];
if(sum>maxsum)
maxsum=sum;
else
if(sum<0)
sum=0;
}
return maxsum;
}
int main()
{
int n,max,ans,temp;
int i,j,k,T,m;
while(~scanf("%d",&n))//说的是一组,实际却是多组
{
temp=ans=max=-0x7fffff;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
scanf("%d",&a[i][j]);
for(i=1;i<=n;i++)
{
memset(b,0,sizeof(b));
for(j=i;j<=n;j++)
{
for(k=1;k<=n;k++)
{
b[k]+=a[j][k];
}
ans=subsequencesum(b,n);//按行枚举 ,猜测按列枚举时间差不多,
if(temp<ans)
temp=ans;
}
}
printf("%d\n",temp);
}
//while(1);
return 0;
}