题意:给你三个点A,B,G,AB之间有a条双向边,AG之间有b条边,BG之间c有条边
问你从A出发然后回到A的方法个数,要求走过所有的边,即求欧拉回路的个数
思路:从A出发回到A,如果是有向边,那么即求有向图的欧拉回路个数,可用best定理求,所以这里考虑将无向图转化为有向图,有向图的欧拉回路中每个顶点的入度一定等于出度,可以在AB之间枚举A的入边,那么其他的所有情况都能求出来了,假设AB之间有x条A->B的边,AG之间有y条A->G的边,BG之间有z条B->G的边,那么同一形态的有向树的总数有C(a,x)*C(b,y)*C(c,z),其中C是组合数
best定理如下:以s为顶点计数有向图的欧拉回路
#include<cstdio>
#include<cstring>
#include<vector>
#include<set>
#include<queue>
#include<cmath>
#include<stack>
#include<iostream>
#include<algorithm>
typedef long long ll;
const ll mod = 1e9 + 7;
const ll maxn = 1e5 + 10;
using namespace std;
ll A[5][5];
ll fac[maxn];
ll deg[5];
ll a, b, c;
ll qmod(ll x, ll n, ll m) {
ll ans = 1;
while(n) {
if(n & 1) ans = (ans * x) % m;
x = x * x % m;
n >>= 1;
}
return ans;
}
ll C(ll n, ll m) { return fac[n] * (qmod(fac[m], mod - 2, mod) * qmod(fac[n - m], mod - 2, mod) % mod) % mod; }
int main() {
fac[0] = 1;
for(ll i = 1; i < maxn; i++) fac[i] = (fac[i - 1] * i) % mod;
while(scanf("%lld %lld %lld", &a, &b, &c) != EOF) {
ll ans = 0;
if(((a + b) & 1) || ((c + b) & 1) || ((a + c) & 1)) { printf("0\n"); continue; }
for(ll x = 0; x <= a; x++) {
ll atob = x, btoa = a - x;
ll atoy = (a + b) / 2 - x, ytoa = b + atob - (a + b) / 2;
ll ytob = (b + c) / 2 - ytoa;
ll btoy = c - ytob;
if(atoy < 0 || ytoa < 0 || btoy < 0 || ytob < 0) continue;
deg[0] = btoa + ytoa;
deg[1] = atob + ytob;
deg[2] = atoy + btoy;
for(ll i = 0; i < 3; i++) A[i][i] = deg[i];
A[1][2] = -btoy; A[2][1] = -ytob;
ll res = (C(a, x) * C(b, atoy) % mod) * C(c, ytob) % mod;
ll det = ((A[1][1] * A[2][2] % mod) - (A[1][2] * A[2][1] % mod) + mod) % mod;
res = res * det % mod;
res = res * deg[0] % mod;
for(ll i = 0; i < 3; i++) res = res * fac[deg[i] - 1] % mod;
ans = (ans + res) % mod;
}
printf("%lld\n", ans);
}
return 0;
}