安装vllm的CPU版本
intel
硬件信息
cpu: Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz
系统: Ubuntu 22.04.5 LTS
安装步骤
配置g++和numa的依赖
#创建一个conda环境并配置gcc/g++版本,为了防止出现问题,请使用 g++>=12.3.0
conda create -n vllm_cpu python=3.10
conda activate vllm_cpu
conda install gxx
#配置numa.h的依赖包
conda install conda-forge::libnuma
#check下libnuma是否安装好
find ~/miniforge3/envs/llm -name "numa.h" 2>/dev/null
find ~/miniforge3/envs/llm -name "*numa*" 2>/dev/null
#完了记得加入环境变量,后面编译时会用到
export C_INCLUDE_PATH="~/miniforge3/envs/llm/include:$C_INCLUDE_PATH"
export CPLUS_INCLUDE_PATH="~/miniforge3/envs/llm/include:$CPLUS_INCLUDE_PATH"
配置cmake和pip依赖,并编译
#克隆仓库并进入
git clone https://github.com/vllm-project/vllm.git vllm_source
cd vllm_source/
#安装依赖的cmake和setuptools-scm
pip install --upgrade pip
pip install "cmake>=3.26" wheel packaging ninja "setuptools-scm>=8" numpy -i https://pypi.tuna.tsinghua.edu.cn/simple/
#按照requirements/cpu.txt安装其他依赖包
pip install -v -r requirements/cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu -i https://pypi.tuna.tsinghua.edu.cn/simple/
#编译,如果找不到numa.h,参考上一步的配置好numa的环境变量再编译
VLLM_TARGET_DEVICE=cpu python setup.py install
查看是否安装成功,
(llm) ziyi.he@mlc05:~/Code/vllm_source$ vllm --version
INFO 12-01 11:24:36 [importing.py:44] Triton is installed but 0 active driver(s) found (expected 1). Disabling Triton to prevent runtime errors.
INFO 12-01 11:24:36 [importing.py:68] Triton not installed or not compatible; certain GPU-related functions will not be available.
0.11.2.dev417+gf72a817bd.cpu
如果有报错,需要更新下环境变量
export LD_LIBRARY_PATH="$CONDA_PREFIX/lib:$LD_LIBRARY_PATH"
1295

被折叠的 条评论
为什么被折叠?



