前言:有兴趣的可以先查看官网主页。接下来从零开始实现自己的一个简单demo:自动识别库里和杜兰特,从而入门darknet-YOLO3世界。总体来说,分为如下步骤: 数据集构建,训练模型,测试模型,评估模型。
一. 数据集构建
1. 收集图片与编号
这里的图片是从网上下载库里和杜兰特的图片。为了规划数据,减少出错的可能性,先给自己的图片编一个合理的序号,比如0001~0999。由于时间原因,只下载了68张图片,当然,这些数据对于训练一个很好的模型是远远不够的。
2. 标注数据
做完图片标签的文件夹是这样的:
3. 利用voc制作自己的数据集
在目录下新建VOC2007,并在VOC2007下新建Annotations,ImageSets和JPEGImages三个文件夹。在ImageSets下新建Main文件夹。文件目录如下所示:
将自己的数据集图片拷贝到JPEGImages目录下。将数据集label的xml文件拷贝到Annotations目录下。在VOC2007下新建test.py文件夹,将下面代码拷贝进去运行,将生成四个文件:train.txt,val.txt,test.txt和trainval.txt。
import os
import random
trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets\Main'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('ImageSets/Main/trainval.txt', 'w')
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
fval = open('ImageSets/Main/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftest.write(name)
else:
fval.write(name)
else:
ftrain.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
生成后的目录结构如下所示: