PyTorch训练模型添加L1/L2正则化的两种实现方式

L1/L2正则化的作用

L1正则化作用到参数会产生更稀疏的解,既能使参数在训练过程中尽量靠近最优解的同时,一些参数为0。L1正则化的稀疏性质被广泛应用于特征选择,可从特征集合中选出具有代表的特征子集,以此简化机器学习问题。L1正则化的表达式如下:
f ( θ ) = ∣ ∣ θ ∣ ∣ 1 = ∑ i ∣ θ i ∣ f(\theta) = || \theta ||_{1} = \sum_{i} | \theta_{i} | f(θ)=θ1=iθ

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值