题目描述
You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i] is the number of smaller elements to the right of nums[i].
Example:
Given nums = [5, 2, 6, 1]
To the right of 5 there are 2 smaller elements (2 and 1).
To the right of 2 there is only 1 smaller element (1).
To the right of 6 there is 1 smaller element (1).
To the right of 1 there is 0 smaller element.
Return the array [2, 1, 1, 0].
题意理解
给一个数组nums,返回一个数组count,该数组i位置上的数是nums[i]右边比它大的数.
其实就是找每一个数的逆序数对的个数
MergeSort
这个方法很聪明,但是也很难,参考了网上的代码
算法思想:逆序数对其实就是归并排序中要交换位置的数对
参考资料
参考网站处的代码:
#include <bits/stdc++.h>
int _mergeSort(int arr[], int temp[], int left, int right);
int merge(int arr[], int temp[], int left, int mid, int right);
/* This function sorts the input array and returns the
number of inversions in the array */
int mergeSort(int arr[], int array_size) {
int *temp = (int *)malloc(sizeof(int)*array_size);
return _mergeSort(arr, temp, 0, array_size - 1);
}
/* An auxiliary recursive function that sorts the input array and
returns the number of inversions in the array. */
int _mergeSort(int arr[], int temp[], int left, int right) {
int mid, inv_count = 0;
if (right > left) {
/* Divide the array into two parts and call _mergeSortAndCountInv()
for each of the parts */
mid = (right + left)/2;
/* Inversion count will be sum of inversions in left-part, right-part
and number of inversions in merging */
inv_count = _mergeSort(arr, temp, left, mid);
inv_count += _mergeSort(arr, temp, mid+1, right);
/*Merge the two parts*/
inv_count += merge(arr, temp, left, mid+1, right);
}
return inv_count;
}
/* This funt merges two sorted arrays and returns inversion count in
the arrays.*/
int merge(int arr[], int temp[], int left, int mid, int right) {
int i, j, k;
int inv_count = 0;
i = left; /* i is index for left subarray*/
j = mid; /* j is index for right subarray*/
k = left; /* k is index for resultant merged subarray*/
while ((i <= mid - 1) && (j <= right)) {
if (arr[i] <= arr[j])
{
temp[k++] = arr[i++];
}
else
{
temp[k++] = arr[j++];
/*this is tricky -- see above explanation/diagram for merge()*/
inv_count = inv_count + (mid - i);
}
}
/* Copy the remaining elements of left subarray
(if there are any) to temp*/
while (i <= mid - 1)
temp[k++] = arr[i++];
/* Copy the remaining elements of right subarray
(if there are any) to temp*/
while (j <= right)
temp[k++] = arr[j++];
/*Copy back the merged elements to original array*/
for (i=left; i <= right; i++)
arr[i] = temp[i];
return inv_count;
}
/* Driver program to test above functions */
int main(int argv, char** args)
{
int arr[] = {1, 20, 6, 4, 5};
printf(" Number of inversions are %d \n", mergeSort(arr, 5));
getchar();
return 0;
}
我的解法
上面的代码跟需要的有所不同,需要更改,并且稍微有点晦涩,于是用自己的理解到的规律重新写了一种
在归并排序的时候有两个阶段,一个是排序,然后是归并,
1. 排序的时候,如果需要对调,那么对调的大的那个数就找到了一个更小数,所以大的那个数的result要+1
2. 归并的时候,如果右边和左边有一组数需要对调,说明右边有一个数比左边还没归并到的每个数都要小,说明左边还没归并到的每个数都找到了一个比自己小的数,所以计数器count+1,左边每个数归并到的时候result加上当时的count即可.
代码如下:
struct node {
int data;
int pos;
node(int d, int p) {
data = d;
pos = p;
}
};
class Solution {
public:
vector<int> countSmaller(vector<int>& nums) {
vector<int> result(nums.size(), 0);
vector<node> seq;
for (int i = 0; i < nums.size(); i++)
seq.push_back(node(nums[i], i));
mergeSort(seq, result, 0, nums.size() - 1);
return result;
}
private:
vector<node> mergeSort(vector<node>&seq, vector<int>& result, int l, int r) {
// basic condition
vector<node> temp;
if (r < l) return temp;
if (l == r) {
temp.push_back(seq[l]);
return temp;
}
if (r - l == 1) {
if (seq[l].data > seq[r].data) {
temp.push_back(seq[r]);
temp.push_back(seq[l]);
result[seq[l].pos]++;
} else {
temp.push_back(seq[l]);
temp.push_back(seq[r]);
}
return temp;
}
// sort
int mid = (r + l) / 2;
vector<node> left = mergeSort(seq, result, l, mid);
vector<node> right = mergeSort(seq, result, mid+1, r);
//merge
int count = 0;
int i = 0, j = 0;
while (i < left.size() || j < right.size()) {
if (i >= left.size()) // the left is end
while (j < right.size())
temp.push_back(right[j++]);
else if (j >= right.size()) // the right is end
while (i < left.size()) {
result[left[i].pos] += count;
temp.push_back(left[i++]);
}
else if (left[i].data > right[j].data) {
count++;
temp.push_back(right[j++]);
} else {
result[left[i].pos] += count;
temp.push_back(left[i++]);
}
}
return temp;
}
};
开销 O(nlogn)
BST
相比mergesort更简洁易懂
class Solution {
public:
struct Node {
int val, smaller;
Node *left, *right;
Node(int value, int small) {
left=right=NULL, val=value, smaller=small;
}
};
int insert(Node *&root, int value) {
if (root==NULL)
return (root=new Node(value, 0)), 0;
if (value < root->val)
return root->smaller++, insert(root->left, value);
else
return insert(root->right, value) + root->smaller + (value>root->val ? 1 : 0);
}
vector<int> countSmaller(vector<int>& nums) {
Node *root = NULL;
deque<int> ans;
for (int i=nums.size()-1; i>=0; i--)
ans.push_front(insert(root, nums[i]));
return vector<int> (ans.begin(), ans.end());
}
};