很久以前就看过fanhq666的烷烃计数了,自己也写了一个。。。
http://fanhq666.blog.163.com/blog/static/819434262011719111345665/
http://oeis.org/A000602
做法是把建立烷烃和不标号的无根树(每个点度数不超过4)的双射,然后数无根树的个数。
树总有1-2个重心,先确定这个重心或是一条边两端点都是重心,分别计算两种情况。
然后就是n个点的有根树的计数了。
枚举重心下接了多少个点,这几个点的子树大小分别是多少。
之后用乘法原理就可以确定。
特殊地,子树大小一样时要把重复的去掉。(比如有两个为x的子树,这两个子树共有C(x+1,2)种选法。)
n个点的有根树的个数记为dp[n],
用同样的方法枚举子树情况就可以计算。
//n烷个数?
//假装我写了BG的高精度运算。
#include <iostream>
#include <stdio.h>
using namespace std;
struct BG {
int a[2300] , l;
};
int n;
int table[7] = {0,1,1,1,2,3};
BG dp[10200] , ans;
int C ( BG x , int y ) {
int i;
BG p;
p.a[1] = 1; p.l = 1;
for ( i = 1 ; i <= y ; i++ ) p = p * (x-i+1);
for ( i = 1 ; i <= y ; i++ ) p = p / i;
//cout << x << " " << y << " " << p << "#$" << endl;
return p;
}
void work () {
int i , j , k , l , o , a[5] , cnt;
BG tmp , t;
scanf ( "%d" , &n );
if ( n <= 5 ) {
printf ( "%d\n" , table[n] );
return ;
}
dp[1].a[1] = 1; dp[2].a[1] = 1; dp[3].a[1] = 2; dp[1].l = dp[2].l = dp[3].l = 1;
for ( i = 4 ; i <= n ; i++ ) {
dp[i] += dp[i-1];
//cout << dp[i] << " " << i << endl;
for ( j = 1 ; j <= i ; j++ ) {
k = i - 1 - j;
if ( j > k ) break;
if ( j < k ) {
dp[i] += dp[j] * dp[k];
}
if ( j == k ) dp[i] += C ( dp[j] + 2 - 1 , 2 );
}
//cout << dp[i] << " " << i << endl;
for ( j = 1 ; j <= i ; j++ ) {
for ( k = j ; k <= i ; k++ ) {
l = i - 1 - j - k;
if ( k > l ) break;
if ( j == k && k == l ) dp[i] += C ( dp[j] + 3 - 1 , 3 );
else {
if ( j == k ) dp[i] += C ( dp[j] + 2 - 1 , 2 ) * dp[l];
else {
if ( k == l ) dp[i] += dp[j] * C ( dp[k] + 2 - 1 , 2 );
else dp[i] += dp[j] * dp[k] * dp[l];
}
}
}
}
//cout << dp[i] << " " << i << endl;
}
//for ( i = 1 ; i <= 6 ; i++ ) cout << dp[i] << endl;
if ( n % 2 == 0 ) {
ans += C ( dp[n/2] + 2 - 1 , 2 );
}
//cout << ans << endl;
for ( a[1] = 1 ; a[1] <= n ; a[1]++ ) {
for ( a[2] = a[1] ; a[2] <= n ; a[2]++ ) {
for ( a[3] = a[2] ; a[3] <= n ; a[3]++ ) {
a[4] = n - 1 - a[1] - a[2] - a[3];
if ( a[3] > a[4] ) break;
if ( (n%2==1&&a[4]>n/2) || (n%2==0&&a[4]>=n/2) ) continue;
//cout << a[1] << " " << a[2] << " " << a[3] << " " << a[4] << endl;
t = 1;
tmp = dp[a[1]];
cnt = 1;
for ( o = 2 ; o <= 4 ; o++ ) {
if ( a[o] == a[o-1] ) cnt++;
else {
tmp = C ( tmp + cnt - 1 , cnt );
cnt = 1;
t = t * tmp;
tmp = dp[a[o]];
}
}
t = t * C ( tmp + cnt - 1 , cnt );
//cout << tmp + cnt - 1 << " " << tmp << " " << cnt << " " << t << endl;
ans += t;
}
}
}
for ( a[1] = 1 ; a[1] <= n ; a[1]++ ) {
for ( a[2] = a[1] ; a[2] <= n ; a[2]++ ) {
a[3] = n - 1 - a[1] - a[2];
if ( a[2] > a[3] ) break;
if ( (n%2==1&&a[3]>n/2) || (n%2==0&&a[3]>=n/2) ) continue;
//cout << a[1] << " " << a[2] << " " << a[3] << endl;
t = 1;
tmp = dp[a[1]];
cnt = 1;
for ( o = 2 ; o <= 3 ; o++ ) {
if ( a[o] == a[o-1] ) cnt++;
else {
tmp = C ( tmp + cnt - 1 , cnt );
cnt = 1;
t = t * tmp;
tmp = dp[a[o]];
}
}
t = t * C ( tmp + cnt - 1 , cnt );
//cout << tmp + cnt - 1 << " " << tmp << " " << cnt << " " << t << endl;
ans += t;
}
}
for ( a[1] = 1 ; a[1] <= n ; a[1]++ ) {
a[2] = n - 1 - a[1];
if ( a[1] > a[2] ) break;
if ( (n%2==1&&a[2]>n/2) || (n%2==0&&a[2]>=n/2) ) continue;
t = 1;
tmp = dp[a[1]];
cnt = 1;
for ( o = 2 ; o <= 2 ; o++ ) {
if ( a[o] == a[o-1] ) cnt++;
else {
tmp = C ( tmp + cnt - 1 , cnt );
cnt = 1;
t = t * tmp;
tmp = dp[a[o]];
}
}
t = t * C ( tmp + cnt - 1 , cnt );
//cout << tmp + cnt - 1 << " " << tmp << " " << cnt << " " << t << endl;
ans += t;
}
printf ( "%d\n" , ans );
}
int main () {
work ();
return 0;
}
但这实际是不全的。
这只是无根树的计数,并没有计算烷烃的手性异构。
比如庚烷实际有11种同分异构体。
把图中的F、Cl、Br换成甲基、乙基、丙级就可以发现这两个不能旋转至重合。
但是高中化学不讲手性异构,所以。。。
http://www.sciencedirect.com/science/article/pii/S0747717105001057
似乎给出了计算方式。
(待填坑)