图1 HBase存储架构图
Table & Region
Table逻辑上以Region的形式保存在RegionServer中。当Table随着记录数不断增加而变大后,会逐渐分裂成多份splits,成为regions,一个region由[startkey, endkey]表示,不同的region会被Master分配给相应的RegionServer进行管理:

HBase中有两张特殊的Table,-ROOT-和.META.
ü .META.:记录了用户表的Region信息,.META.可以分裂成多个regoin
ü -ROOT-:记录了.META.表的Region信息,-ROOT-只有一个region
ü Zookeeper中记录了-ROOT-表的location
META 表存储了所有的用户Region的信息,同时包括HReginServer对象的信息,其中有每一个行值的开始到结束的键值,一个表是否有效或失效,每一个HReginServer的地址,等等。META 表的大小随着用户Region的增加而增加。
ROOT表被限制在一个区域中,它指定了所有的META表信息。这些信息包括每一个META所处的区域和HReginServer信息。
ROOT表和META表每一行的大小大概是1KB左右。每一个区域的大小是256MB,这意味着ROOT表可以装载2.6 x 105 META区域,转化成用户区域就是6.9 x 1010,转化成可以存储的字节数就是1.8 x 1019 。
Zookeeper
Zookeeper是Hadoop的正式子项目,应该不属于HBase,Zookeeper Quorum中除了存储了-ROOT-表的地址和HMaster的地址,HRegionServer也会把自己以Ephemeral方式注册到Zookeeper中,使得HMaster可以随时感知到各个HRegionServer的健康状态。此外,Zookeeper也避免了HMaster的单点问题,当HMaster挂了之后能协调产生新的HMaster,假如没有配置Zookeeper,Zookeeper的部分功能由Master自己完成,HBase还是存在单点问题。
Hbase Client
HBase Client使用HBase的RPC机制与HMaster和HRegionServer进行通信,对于管理类操作,Client与HMaster进行RPC;对于数据读写类操作,Client与HRegionServer进行RPC。
假如配置中存在Zookeeper,Client访问用户数据之前需要首先访问zookeeper,一旦ROOT区域被找到以后,Client就可以通过扫描ROOT区域找到相应的META区域去定位实际提供数据的HReginServer。
当定位到提供数据的HReginServer以后,Client就可以通过这个HReginServer找到需要的数据了。
这些信息将会被Client缓存起来,当下次请求的时候,就不需要重复查找。
当这些区域中的某个区域不可用的时候,Client将会逆向执行上面的过程,直到找到实际提供数据的HReginServer为止。
Hbase Master
主要负责Table和Region的管理工作:
1) 管理用户对Table的增、删、改、查操作
2) 管理HRegionServer的负载均衡,调整Region分布
3) 在Region Split后,负责新Region的分配
4) 在HRegionServer停机后,负责失效HRegionServer 上的Regions迁移
同时HBaseMaster还含有一个指向包含有ROOT区域的HReginServer地址。同时,HBaseMaster会监控每一台HReginServer的健康状况,如果某一台HReginServer不可用,它将会把不可用的HReginServer来提供服务的HLog和表由其他HReginServer来提供。
与 Bigtable不同的是,如果没有Zookeeper,HBaseMaster失效了,整个集群就会关闭。在Bigtable中,即使Master机器失效了,Tabletserver还是可以提供服务的。Bigtable使用了而外的锁管理机制,而我们的HBase使用的单点访问模式:所有的HReginServer都访问HBaseMaster。
HRegionServer主要负责响应用户I/O请求,向HDFS文件系统中读写数据,是HBase中最核心的模块。。HReginServer通过与HBaseMaster通信获取自己需要服务的数据表,并向HBaseMaster反馈自己的运行状况。
HRegionServer
HRegionServer管理了一系列HRegion对象,每个HRegion对应了Table中的一个Region,HRegion中由多个HStore组成。每个HStore对应了Table中的一个Column Family的存储,因此最好将具备共同IO特性的column放在同一个Column Family中,这样最高效。
HStore存储是HBase存储的核心,由两部分组成,一部分是MemStore,一部分是StoreFiles。MemStore是Sorted Memory Buffer,用户写入的数据首先会放入MemStore,当MemStore满了以后会Flush成一个StoreFile(底层实现是HFile),当StoreFile文件数量增长到一定阈值,会触发Compact合并操作,将多个StoreFiles合并成一个StoreFile,合并过程中会进行版本合并和数据删除,因此可以看出HBase其实只有增加数据,所有的更新和删除操作都是在后续的compact过程中进行的,这使得用户的写操作只要进入内存中就可以立即返回,保证了HBase I/O的高性能。当StoreFiles Compact后,会逐步形成越来越大的StoreFile,当单个StoreFile大小超过一定阈值后,会触发Split操作,同时把当前Region Split成2个Region,父Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer上,使得原先1个Region的压力得以分流到2个Region上。下图描述了Compaction和Split的过程:
Write Requests
当一个写的请求到来的时候,它首先会写到一个叫做HLog的write-ahead-log中,再写入MemStore。每一个HStore只能有一个MemStore。
Read Requests
当一起读取的请求到来的时候,HReginServer会先在MemStore中寻找该数据,当找不到的时候,才会去在StoreFile中寻找。
Cache Flushes
当MemStore到达配置的大小以后,将会创建一个HFile,将其写到磁盘中去。这将减少HReginServer的内存压力。
在读和写的过程中,Cache flushes将会经常发生。当创建一个新的StoreFile的时候,读和写的操作会被挂起,知道新的StoreFile创建好,并被加入到HStroe的管理中后才可以使用。
Compactions
当一定数量的StoreFile超过一个配置的阀值之后,压缩操作就会开始执行。压缩操作的主要工作就是周期性地将一些StoreFile合并成一个StoreFile。
在执行压缩操作的过程中,HReginServer的读和写操作将被挂起,直到操作执行完毕。
Region Splits
当一个HStore所管理的StoreFile超过一个配置(当前是256MB)的值以后,将会执行Region的切分操作。Region的切分操作将原先的Region对半分割为2个新的Region。
在进行Region切分的操作过程中,读和写的操作将被挂起,直到完成为止。