大模型笔记【2】 LLM in Flash

Apple发布的新文章介绍了一种名为LLMinaFlash的方法,通过在FlashMemory中有效管理和加载大模型的稀疏参数,尤其是利用FeedForward层的稀疏性和SlidingWindow技术,显著减少了DRAM中的内存需求,提高计算效率。

Apple最近发表了一篇文章,可以在iphone, MAC 上运行大模型:【LLM in a flash: Efficient Large Language Model Inference with Limited Memory】。

图片

主要解决的问题是在DRAM中无法存放完整的模型和计算,但是Flash Memory可以存放完整的模型。但是Flash带宽较低,LLM in Flash通过尽量减少从Flash中加载参数的数量,优化在DRAM中的内存管理,实现在Flash带宽有限的条件下提高计算速度的目的。


这篇文章很多都是工程上的细节,很少理论。下面是这篇论文的总结,如有不对的地方,欢迎私信。

  • 利用FeedForward 层的稀疏度,只加载FeedForward层输入非0和预测输出非0的参数

  • 通过Window Sliding 只加载增量的参数,复用之前的计算,减少需要加载的参数。

  • 将up-projection的row和down-projection的column放在一起存放,这样在flash中可以一次读取比较大的chunk,提高flash的带宽利用效率。

    如下图所示,chunk越大,带宽也就越大,初始加载chunk的latency可以被平摊。

MATLAB代码实现了一个基于多种智能优化算法优化RBF神经网络的回归预测模型,其核心是通过智能优化算法自动寻找最优的RBF扩展参数(spread),以提升预测精度。 1.主要功能 多算法优化RBF网络:使用多种智能优化算法优化RBF神经网络的核心参数spread。 回归预测:对输入特征进行回归预测,适用于连续值输出问题。 性能对比:对比不同优化算法在训练集和测试集上的预测性能,绘制适应度曲线、预测对比图、误差指标柱状图等。 2.算法步骤 数据准备:导入数据,随机打乱,划分训练集和测试集(默认7:3)。 数据归一化:使用mapminmax将输入和输出归一化到[0,1]区间。 标准RBF建模:使用固定spread=100建立基准RBF模型。 智能优化循环: 调用优化算法(从指定文件夹中读取算法文件)优化spread参数。 使用优化后的spread重新训练RBF网络。 评估预测结果,保存性能指标。 结果可视化: 绘制适应度曲线、训练集/测试集预测对比图。 绘制误差指标(MAE、RMSE、MAPE、MBE)柱状图。 十种智能优化算法分别是: GWO:灰狼算法 HBA:蜜獾算法 IAO:改进天鹰优化算法,改进①:Tent混沌映射种群初始化,改进②:自适应权重 MFO:飞蛾扑火算法 MPA:海洋捕食者算法 NGO:北方苍鹰算法 OOA:鱼鹰优化算法 RTH:红尾鹰算法 WOA:鲸鱼算法 ZOA:斑马算法
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值