【spark RDD】spark 之 Kryo高性能序列化框架

一. RDD序列化的原因

Spark初始化工作是在Driver端进行的,而实际运行程序是在Executor端进行的,这就涉及到了跨进程通信,是需要序列化的。所以用户开发的关于RDD的map,flatMap,reduceByKey等transformation 操作(闭包)有如下执行过程:

  • 代码中对象在driver本地序列化
  • 对象序列化后传输到远程executor节点
  • 远程executor节点反序列化对象,最终在远程executor节点中执行。

在spark中4个地方用到了序列化:

  • 算子中用到了driver定义的外部变量时;
  • 将自定义的class作为RDD的数据类型时;
  • 使用可序列化的持久化策略的时候。比如:MEMORY_ONLY_SER,spark会将RDD中每个分区都序列化成一个大的字节数组;
  • shuffle。

 

二. Kryo序列化框架

官网地址: https://github.com/EsotericSoftware/kryo

Java的序列化能够序列化任何的类。但是比较重,序列化后对象的体积也比较大。

Spark出于性能的考虑,Spark2.0开始支持另外一种Kryo序列化机制。Kryo速度是Serializable的10倍。当RDD在Shuffle数据的时候,简单数据类型、数组和字符串类型已经在Spark内部使用Kryo来序列化。

 
spark使用Kryo序列化框架


public class Test02_Kryo {
   
   

    public static void main(String[] args) throws ClassNotFoundException {
   
   

        // 1.创建配置对象
        SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("sparkCore")
                // 替换默认的序列化机制
                .set("spark.serializer", 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

roman_日积跬步-终至千里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值