【Flink状态管理五】Checkpoint的设计与实现

本文详细介绍了Flink中Checkpoint的设计,包括启动、执行和确认过程,以及源码层面如何配置和管理Checkpoint。重点讲解了Checkpoint的执行机制,如Barrier事件的对齐和状态数据的持久化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于系统原因导致Flink作业无法正常运行的情况非常多,且很多时候都是无法避免的。对于Flink集群来讲,能够快速从异常状态中恢复,同时保证处理数据的正确性和一致性非常重要。Flink主要借助Checkpoint的方式保障整个系统状态数据的一致性,也就是基于ABS算法实现轻量级快照服务。

本节我们详细了解Checkpoint的设计与实现。

 

1. Checkpoint的整体设计

Checkpoint的执行过程分为三个阶段:启动、执行以及确认完成。其中Checkpoint的启动过程由JobManager管理节点中的CheckpointCoordinator组件控制,该组件会周期性地向数据源节点发送执行Checkpoint的请求,执行频率取决于用户配置的CheckpointInterval参数。

执行过程:

  1. 在JobManager管理节点通过CheckpointCoordinator组件向每个数据源节点发送Checkpoint执行请求,此时数据源节点中的算子会将消费数据对应的Position发送到JobManager管理节点中。
  2. JobManager节点会存储Checkpoint元数据,用于记录每次执行Checkpoint操作过程中算子的元数据信息,例如在FlinkKafkaConsumer中会记录消费Kafka主题的偏移量,用于确认从Kafka主题中读取数据的位置。
  3. 在数据源节点执行完Checkpoint操作后,继续向下游节点发送CheckpointBarrier事件,下游算子通过对齐Barrier事件,触发该算子的Checkpoint操作。
    当下游的map算子接收到数据源节点的Checkpoint
    Barrier事件后,首先对当前算子的数据进行处理,并等待其他上游数据源节点的Barrier事件到达。该过程就是Checkpoint
    Barrier对齐,目的是确保属于同一Checkpoint的数据能够全部到达当前节点。

在这里插入图片描述

Barrier事件的作用就是切分不同Checkpoint批次的数据。

  • 当map算子接收到所有上游的Barrier事件后,就会触发当前算子的Checkpoint操作,并将状态数据快照到指定的外部持久化介质中,该操作主要借助状态后端存储实现。

  • 当状态数据执行完毕后,继续将Barrier事件发送至下游的算子,进行后续算子的Checkpoint操作。

  • 另外,在map算子中执行完Checkpoint操作后,也会向JobManager管理节点发送Ack消息,确认当前算子的Checkpoint操作正常执行。此时Checkpoint数据会存储该算子对应的状态数据,如果StateBackend为MemoryStateBackend,则主要会将状态数据存储在JobManager的堆内存中

sink节点的ack

像map算子节点一样,当Barrier事件到达sink类型的节点后,sink节点也会进行Barrier对齐操作,确认上游节点的数据全部接入。然后对接入的数据进行处理,将结果输出到外部系统中。完成以上步骤后,sink节点会向JobManager管理节点发送Ack确认消息,确认当前Checkpoint中的状态数据都正常进行了持久化操作。(之后呢?当任务结束之后,cp会消失还是?)

 

2. Checkpoint创建源码解析

通过调用StreamExecutionEnvironment.enableCheckpointing(),开启Checkpoint。
此时Checkpoint的配置会被存储在StreamGraph中,然后将StreamGraph中的CheckpointConfig转换为JobCheckpointingSettings数据结构存储在JobGraph对象中,并伴随JobGraph提交到集群运行。启动JobMaster服务后,JobMaster调度和执行Checkpoint操作。

2.1. DefaultExecutionGraphBuilder.buildGraph

如下代码,通过JobGraph构建ExecutionGraph的过程中,获取JobGraph中存储的JobCheckpointingSettings配置,然后创建ExecutionGraph。

1)根据snapshotSettings配置获取triggerVertices、ackVertices以及confirmVertices节点集合,并转换为对应的ExecutionJobVertex集合。

  • 其中triggerVertices集合存储了所有SourceOperator节点,这些节点通过CheckpointCoordinator主动触发Checkpoint操作。
  • ackVertices和confirmVertices集合存储了StreamGraph中的全部节点,代表所有节点都需要返回Ack确认信息并确认Checkpoint执行成功。

2)创建CompletedCheckpointStore组件,用于存储Checkpoint过程中的元数据。

  • 当对作业进行恢复操作时会在CompletedCheckpointStore中检索最新完成的Checkpoint元数据信息,然后基于元数据信息恢复Checkpoint中存储的状态数据。CompletedCheckpointStore有两种实现,分别为StandaloneCompletedCheckpointStore和ZooKeeperCompletedCheckpointStore。
  • 在CompletedCheckpointStore中通过maxNumberOfCheckpointsToRetain参数配置以及结合checkpointIdCounter计数器保证只会存储固定数量的CompletedCheckpoint。

3)创建CheckpointStatsTracker实例
用于监控和追踪Checkpoint执行和更新的情况,包括Checkpoint执行的统计信息以及执行状况,WebUI中显示的Checkpoint监控数据主要来自CheckpointStatsTracker。

4)创建StateBackend,从UserClassLoader中反序列化出应用指定的StateBackend并设定为applicationConfiguredBackend。

5)初始化用户自定义的Checkpoint Hook函数

6)最终调用executionGraph.enableCheckpointing()方法,在作业的执行和调度过程中开启Checkpoint。

// 配置状态数据checkpointing
// 从jobGraph中获取JobCheckpointingSettings
JobCheckpointingSettings snapshotSettings = jobGraph.getCheckpointingSettings();
//如果snapshotSettings不为空,则开启checkpoint功能
if (snapshotSettings != null) {
   
   List<ExecutionJobVertex> triggerVertices =
         idToVertex(snapshotSettings.getVerticesToTrigger(), executionGraph);
   List<ExecutionJobVertex> ackVertices =
         idToVertex(snapshotSettings.getVerticesToAcknowledge(), executionGraph);
   List<ExecutionJobVertex> confirmVertices =
         idToVertex(snapshotSettings.getVerticesToConfirm(), executionGraph);
   //创建CompletedCheckpointStore
   CompletedCheckpointStore completedCheckpoints;
   CheckpointIDCounter checkpointIdCounter;
   try {
   
      int maxNumberOfCheckpointsToRetain = jobManagerConfig.getInteger(
          CheckpointingOptions.MAX_RETAINED_CHECKPOINTS);
      if (maxNumberOfCheckpointsToRetain <= 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

roman_日积跬步-终至千里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值