[Spark进阶]-- spark RDD中foreachPartition和foreach说明

本文详细介绍了Spark中RDD的foreachPartition和foreach操作。foreach用于对每个partition中的数据进行处理,但不保证处理的完整性和顺序;而foreachPartition则将iterator传递给用户定义的函数,允许更灵活的控制,尤其适用于处理大量数据,可以避免内存溢出问题。

主题:RDD的foreachPartition/foreach的操作

 

说明:这两个action主要用于对每个partition中的iterator时行迭代的处理.通过用户传入的function对iterator进行内容的处理.

一、foreach的操作

foreach中,传入一个function,这个函数的传入参数就是每个partition中,每次的foreach得到的一个rdd的kv实例,也就是具体的内容,

这种处理你并不知道这个iterator的foreach什么时候结果,只能是foreach的过程中,你得到一条数据,就处理一条数据.

由下面的红色部分可以看出,foreach操作是直接调用了partition中数据的foreach操作:

 

def foreach(f: T => Unit): Unit = withScope {
  val cleanF = sc.clean(f)
  sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}

 

示例说明:

val list = new ArrayBuffer()

Rdd.foreach(record => {

  list += record

  If (list.size >= 10000) {

    list.flush

  }

})

 

上面这段示例代码中,如果会存在一个问题,迭代的最后,list的结果可能还没有达到10000条,这个时候,

你在内部的处理的flush部分就不会执行,也就是迭代的最后如果没有达到10000的数据就会丢失.

所以在foreach中,一般就是拿到一条数据进行下处理Rdd.foreach(record => {record._1 == a return})

 

二、foreachPartition操作

这个函数也是根据传入的function进行处理,但不同之处在于,这里function的传入参数是一个partition对应数据的iterator.

而不是直接使用iterator的foreach,这种情况下,如果是上面foreach的示例代码中list这个片段在这个action中就能够正常的去处理.

def foreachPartition(f: Iterator[T] => Unit): Unit = withScope {
  val cleanF = sc.clean(f)
  sc.runJob(this, (iter: Iterator[T]) => cleanF(iter))
}

 

示例代码:

Val list = new ArrayBuffer

rdd.foreachPartition(it => {

  It.foreach(r => {

List += r

If (list.size > 10000) flush

  })

  If (list.size > 0) flush

})

 

最后说下这两个action的区别:

Foreach与ForeachPartition都是在每个partition中对iterator进行操作,

不同的是,foreach是直接在每个partition中直接对iterator执行foreach操作,而传入的function只是在foreach内部使用,

而foreachPartition是在每个partition中把iterator给传入的function,让function自己对iterator进行处理(可以避免内存溢出).

 

 

参考文章:http://blog.youkuaiyun.com/u014393917/article/details/50607437

 

 

### 回答1: Spark中的RDD(Resilient Distributed Datasets)是一种分布式的数据结构,它可以被分割成多个分区,每个分区可以在不同的节点上进行计算。RDD提供了一系列的转换操作函数,可以对RDD进行各种操作。 RDD转换函数包括map、filter、flatMap、union、distinct、groupByKey、reduceByKey、sortByKey等。这些函数可以对RDD进行转换操作,生成新的RDDRDD操作函数包括count、collect、reduce、take、foreach等。这些函数可以对RDD进行操作,返回结果或者将结果输出到外部系统。 在使用RDD时,需要注意一些问题,如RDD的惰性计算、RDD的持久化、RDD的分区等。同时,还需要根据实际情况选择合适的RDD转换操作函数,以达到最优的计算效果。 总之,Spark中的RDD转换操作函数是非常重要的,掌握它们可以帮助我们更好地使用Spark进行分布式计算。 ### 回答2: Spark是一个基于内存计算的分布式计算框架,可以实现大规模数据集的快速处理。在Spark中,RDD(弹性分布式数据集)是数据处理的核心概念,它是一种可以分区、并行计算容错的不可变数据结构。而Spark中的函数式编程模型则将RDD的转换与操作都看做是函数的调用,从而简洁明了,易于理解操作。 在Spark中,解决一个具体问题通常涉及一系列RDD的转换操作。RDD的转换包括对原有RDD进行过滤、映射、聚合等处理,得到新的RDD;操作则是对新的RDD进行输出、保存、统计、排序等操作。以下介绍几种常见的RDD转换操作函数。 1. map函数 map函数是一种转换函数,它可以将一个RDD中每个元素通过一个用户定义的函数映射到另一个RDD中,并得到新的RDD。例如,将一个整型RDD中的每个元素都乘以2后得到一个新的整型RDD: ``` val rdd1 = sc.parallelize(Array(1, 2, 3, 4)) val rdd2 = rdd1.map(x => x*2) ``` 2. filter函数 filter函数也是一种转换函数,它可以根据用户定义的条件过滤一个RDD中的元素,并得到一个新的RDD。例如,将一个字符串RDD中长度大于5的元素过滤出来得到一个新的字符串RDD: ``` val rdd1 = sc.parallelize(Array("hello", "world", "spark", "rdd")) val rdd2 = rdd1.filter(x => x.length > 5) ``` 3. reduce函数 reduce函数是一种操作函数,它可以将一个RDD中的元素按照用户定义的函数进行聚合并得到一个结果。例如,将一个整型RDD中的所有元素相加得到一个整数结果: ``` val rdd1 = sc.parallelize(Array(1, 2, 3, 4)) val result = rdd1.reduce((x, y) => x + y) ``` 4. collect函数 collect函数也是一种操作函数,它可以将一个RDD中的所有元素收集起来并输出到Driver端。然而,使用collect函数需要注意RDD的大小,如果RDD很大,就可能会出现内存溢出的情况。例如,将一个整型RDD中的所有元素收集起来并输出到屏幕: ``` val rdd1 = sc.parallelize(Array(1, 2, 3, 4)) val result = rdd1.collect() result.foreach(println) ``` 5. saveAsTextFile函数 saveAsTextFile函数也是一种操作函数,它可以将一个RDD中的所有元素保存到指定的文本文件中。例如,将一个字符串RDD中的所有元素保存到hdfs的一个文本文件中: ``` val rdd1 = sc.parallelize(Array("hello", "world", "spark", "rdd")) rdd1.saveAsTextFile("hdfs://localhost:8020/user/abc/output") ``` 总之,Spark中的RDD转换操作函数具有弹性、高效、简单等特点,能够满足各种大规模数据处理需求。需要特别注意的是,Spark中的函数式编程模型是基于JVM的,因此要充分利用内存CPU资源,需要对集群配置调优进行一定的优化测试。 ### 回答3: Spark中的RDD(Resilient Distributed Datasets)是分布式的弹性数据集,它可以在大规模集群上并行化地计算,并且提供了一系列的转换操作函数。其中,Spark提供的Spark函数简单易用,具有高效的数据处理能力,可以帮助开发者快速开发分布式应用程序。 RDD转换函数是将一个RDD转换成另一个RDD的函数,转换后的RDD通常包含了数据处理、筛选过滤后的新数据集,可以用来接着进行后续的计算。 例如,map函数可以将RDD中的每个元素应用一个函数,然后返回一个新的转换过的RDD: ``` val originalData = sc.parallelize(List(1, 2, 3, 4, 5)) val mappedData = originalData.map(x => x * 2) ``` 这里,map函数将原始数据中的每个元素都乘上了2,返回了一个新的RDD。 除了map函数, 还有flatMap、filter、groupBy等常用的转换函数,都可以帮助我们对RDD做出各种各样的数据处理转换。 RDD操作函数则是对RDD进行真正的计算操作,例如reduce、count、collect等函数,这些函数会触发Spark的分布式计算引擎执行真正的计算任务。 比如,reduce函数可以将RDD中的所有元素进行聚合,返回一个单一的结果: ``` val originalData = sc.parallelize(List(1, 2, 3, 4, 5)) val reducedData = originalData.reduce(_ + _) ``` 这里,reduce函数将原始数据中的所有元素进行相加操作,返回了一个整数类型的结果。 Spark提供的操作函数非常丰富,从基本的聚合、排序、统计操作,到高级的机器学习图形处理等操作,开发者可以根据不同的业务需求灵活选择使用。 总之,Spark中的RDD转换操作函数是分布式数据处理的核心之一,通过这些函数,开发者能够方便地对海量数据进行分布式的计算处理。同时,Spark也提供了丰富的API工具,便于开发者进行高效的Spark应用程序开发。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值