【Spark | Spark-Core篇】RDD(弹性分布式数据集)概述

1. 什么是RDD

RDDResilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象。

代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。

RDD类比工厂生产。

2. RDD五大特性

3. RDD的创建

3.1 内存中(集合)创建RDD

object Spark01_RDD_Memory {
  def main(args: Array[String]): Unit = {
    // TODO 准备环境
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")

    val sc = new SparkContext(sparkConf)

    // 从内存中创建RDD,将内存中集合的数据作为处理的数据源
//    val rdd = sc.makeRDD(List(1, 2, 3, 4))
    // makeRDD方法第二个参数不写默认的是,分区个数=cpu的核数

    // 如果给了第二个参数,即rdd有两个分区
    val rdd = sc.makeRDD(List(1, 2, 3, 4), 2)
    
    // 将分区信息保存在datas文件夹下
    rdd.saveAsTextFile("datas")


    // 关闭环境
    sc.stop()

  }
}

// datas下的文件分区信息

3.2 从外部存储系统的数据集创建

由外部存储系统的数据集创建RDD包括:本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、HBase等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值