N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum number of swaps so that every couple is sitting side by side. A swapconsists of choosing any two people, then they stand up and switch seats.
The people and seats are represented by an integer from 0 to 2N-1, the couples are numbered in order, the first couple being (0, 1), the second couple being (2, 3), and so on with the last couple being (2N-2, 2N-1).
The couples' initial seating is given by row[i] being the value of the person who is initially sitting in the i-th seat.
Example 1:
Input: row = [0, 2, 1, 3]
Output: 1
Explanation: We only need to swap the second (row[1]) and third (row[2]) person.
Example 2:
Input: row = [3, 2, 0, 1]
Output: 0
Explanation: All couples are already seated side by side.
Note:
len(row)is even and in the range of[4, 60].rowis guaranteed to be a permutation of0...len(row)-1.
看到提示里有贪心算法,就确定了思考方向。我的思路是,一系列互相纠缠的情侣构成了一个环,而n对情侣构成的环至少要n-1次交换才能调整好。例如说[0,31,......,30,9,........,8,1,.......]这三对情侣就构成了一个环,只需要调整两次就可以让这三对情侣牵上手。
不同环之间的情侣不会互相干涉,因此也不存在不同环之间互相换使调整次数更少的情况了。
下面是我的代码:
public int minSwapsCouples(int[] row) {
int result = 0;
int[] sit = new int[row.length];
for(int i=0;i<row.length;i++)
{
sit[row[i]]=i;
}
int[] record = new int[row.length/2];
int target,pos;
for(int i = 0;i<row.length;i+=2)
{
if(record[i/2]==1)
continue;
target = Partner(row[i]);
pos = Partner(i);
result++;
while(row[Partner(sit[Partner(row[pos])])]!=target)
{
pos = Partner(sit[Partner(row[pos])]);
record[pos/2]=1;
result++;
}
record[sit[Partner(row[pos])]/2]=1;
}
return result;
}
public int Partner(int i)
{
if(i%2==0)
return i+1;
else return i-1;
}
本文探讨了一个有趣的问题,即如何通过最少的座位交换让每对情侣坐在一起。利用贪心算法,作者详细解释了解决方案,并提供了一段Java代码实现。该算法将情侣之间的座位调整视为环状结构,通过计算环的数量来确定最少交换次数。
366

被折叠的 条评论
为什么被折叠?



