2021-06-08

modesim用windows自带的远程工具无法远程运用问题

modelsim安装
1、准备好modelsim SE-64 10.4的安装包和破解文件(modelsim-win64-10.4-se.exe 和MentorKG.exe ,patch_dll.bat)。
2、安装 好 modelsim-win64-10.4-se.exe。 一直YES,直到最后询问是否重启(yes和NO都可以)。
3、将解压的破解文件(MentorKG.exe和patch_dll.bat)复制到安装目录下的win64文件夹中。
4、进入安装目录下的win64 文件夹找到mgls.dll mgls64.dll两个文件,去掉 只读属性;
5、运行patch_dll.bat 或者 MentorKG.exe,稍等一段时间后即可生成一个TXT文本,将其另存为LICENSE.TXT,另存路径选择你安装目录的win64文件夹下;
6、恢复mgls.dll和mgls64.dll两个文件的只读属性;
7、环境变量设置:win10(win8中同样有效)中是这样的 这台电脑》右键选择【属性】》【高级系统设置】》【环境变量】点击【新建】打开编辑对话框,【变量名】命名为MGLS_LICENSE_FILE,【变量值】为你LICENSE.TXT的文件路径。
8、这样就破解完成了,本地直接打开Modelsim应该不会报错了。 (对于SE10.4来说,第4步很关键。)

modelsim远程提升license无效
此时如果使用远程打开Modelsim,则会发现又提示license 不可以使用了。那是因为生成的license不支持远程。

如果要远程则需要修改license.txt.
9、打开license.txt, 在license中每行都有一个HOSTID = XXXXXXXX, 在这个XXXXX后面加入 TS_OK ,加好之后就是:
HOSTID=XXXXXXX TS_OK SN = XXXXX 。。。
凡是有HOSTID 的,后面都加入一个TS_OK .然后保存。
10、再次打开modelsim 就可以使用了。

你已经成功将 `Date` 列转换为 `datetime64[ns]` 类型,并且输出如下: ``` 0 2021-01-04 1 2021-01-05 2 2021-01-06 3 2021-01-07 4 2021-01-08 Name: Date, dtype: datetime64[ns] ``` ✅ **这说明日期解析完全正确!** 接下来你应该执行: ```python df.set_index('Date', inplace=True) df.sort_index(inplace=True) # 确保时间顺序正确 ``` 然后进入主逻辑,使用我们之前修复过的区间筛选函数(作用于索引)即可正常运行。 --- ### ✅ 当前状态确认清单 | 检查项 | 是否完成 | 说明 | |--------|----------|------| | ✔️ `Date` 列是否为 `datetime64[ns]`? | ✅ 是 | 输出已验证 | | ✔️ 是否设置为索引? | ⚠️ 需手动执行 | 必须调用 `set_index` | | ✔️ 时间是否升序排列? | ⚠️ 建议排序 | 使用 `sort_index()` 更安全 | | ✔️ 区间过滤函数是否作用于 `index`? | ✅ 是 | 否则会出错 | --- ### ✅ 推荐后续代码(确保流程完整) ```python # 设置索引并排序 df.set_index('Date', inplace=True) df.sort_index(inplace=True) # 查看数据类型和前几行 print("Index dtype:", df.index.dtype) print("Data head:") print(df.head()) ``` 此时你的 `df.index` 是一个有序的 `DatetimeIndex`,可以安全用于以下操作: ```python intervals = { 'YTD': lambda idx: idx >= pd.Timestamp(year=idx[-1].year, month=1, day=1), '1Y': lambda idx: idx >= idx[-1] - pd.DateOffset(years=1), '6M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=6), '3M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=3), '1M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=1), } ``` 因为 `idx[-1]` 就是最后一个交易日,比如 `2024-03-28`,它是一个 `pd.Timestamp`,支持 `.year`、`.month` 等属性,不会再报错! --- ### ✅ 示例:查看当前 YTD 起始日 你可以加一段调试代码来验证逻辑是否正确: ```python # 调试:打印各个区间的起始时间(以最后一个日期为基准) last_date = df.index[-1] print(f"最新交易日: {last_date}") print("各区间起始日:") print("YTD:", pd.Timestamp(year=last_date.year, month=1, day=1)) print("1Y: ", last_date - pd.DateOffset(years=1)) print("6M: ", last_date - pd.DateOffset(months=6)) print("3M: ", last_date - pd.DateOffset(months=3)) print("1M: ", last_date - pd.DateOffset(months=1)) ``` 输出示例: ``` 最新交易日: 2024-03-28 各区间起始日: YTD: 2024-01-01 1Y: 2023-03-28 6M: 2023-09-28 3M: 2024-01-28 1M: 2024-02-28 ``` 这些日期就是每个区间的“开始日”,之后用它们做布尔索引就能提取对应时间段的数据。 --- ### ✅ 总结:你现在可以继续了! 只要你完成了以下几步: 1. ✅ 成功将 `Date` 转为 `datetime64[ns]` 2. ✅ 执行了 `df.set_index('Date')` 和 `sort_index()` 3. ✅ 使用基于 `idx`(即 DatetimeIndex)的过滤函数 那么之前的两个错误(`float64 has no attribute year` 和 `>= not supported`)都已彻底解决,现在可以放心运行完整的绩效分析代码。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值