内存泄露(一) Android中使用Handler引发的内存泄露

本文深入解析了Android应用中使用Handler时可能导致的内存泄露问题,并提供了有效的解决方案,包括静态内部类和弱引用的应用,以及如何正确处理匿名内部类实例,确保Activity实例在适当时候被垃圾回收。

在Android常用编程中,Handler在进行异步操作并处理返回结果时经常被使用。通常我们的代码会这样实现。

 

?
1
2
3
4
5
6
7
8
9
public class SampleActivity extends Activity {
 
   private final Handler mLeakyHandler = new Handler() {
     @Override
     public void handleMessage(Message msg) {
       // ...
     }
   }
}

但是,其实上面的代码可能导致内存泄露,当你使用Android lint工具的话,会得到这样的警告

 

?
1
2
3
4
5
6
7
8
9
10
11
This Handler class should be static or leaks might occur (com.example.multifragment.SampleActivity. 1 )
 
Issue: Ensures that Handler classes do not hold on to a reference to an outer class
Id: HandlerLeak
 
Since this Handler is declared as an inner class , it may prevent the outer class from being garbage collected.
If the Handler is using a Looper or MessageQueue for a thread other than the main thread, then there is no issue.
If the Handler is using the Looper or MessageQueue of the main thread, you need to fix your Handler declaration,
as follows: Declare the Handler as a static class ; In the outer class , instantiate a WeakReference to the outer
class and pass this object to your Handler when you instantiate the Handler; Make all references to members
of the outer class using the WeakReference object.

看到这里,可能还是有一些搞不清楚,代码中哪里可能导致内存泄露,又是如何导致内存泄露的呢?那我们就慢慢分析一下。

1.当一个Android应用启动的时候,会自动创建一个供应用主线程使用的Looper实例。Looper的主要工作就是一个一个处理消息队列中的消息对象。在Android中,所有Android框架的事件(比如Activity的生命周期方法调用和按钮点击等)都是放入到消息中,然后加入到Looper要处理的消息队列中,由Looper负责一条一条地进行处理。主线程中的Looper生命周期和当前应用一样长。

 

2.当一个Handler在主线程进行了初始化之后,我们发送一个target为这个Handler的消息到Looper处理的消息队列时,实际上已经发送的消息已经包含了一个Handler实例的引用,只有这样Looper在处理到这条消息时才可以调用Handler#handleMessage(Message)完成消息的正确处理。

 

3.在Java中,非静态的内部类和匿名内部类都会隐式地持有其外部类的引用。静态的内部类不会持有外部类的引用。

 

确实上面的代码示例有点难以察觉内存泄露,那么下面的例子就非常明显了

 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public class SampleActivity extends Activity {
  
   private final Handler mLeakyHandler = new Handler() {
     @Override
     public void handleMessage(Message msg) {
       // ...
     }
   }
  
   @Override
   protected void onCreate(Bundle savedInstanceState) {
     super .onCreate(savedInstanceState);
  
     // Post a message and delay its execution for 10 minutes.
     mLeakyHandler.postDelayed( new Runnable() {
       @Override
       public void run() { /* ... */ }
     }, 1000 * 60 * 10 );
  
     // Go back to the previous Activity.
     finish();
   }
}

分析一下上面的代码,当我们执行了Activity的finish方法,被延迟的消息会在被处理之前存在于主线程消息队列中10分钟,而这个消息中又包含了Handler的引用,而Handler是一个匿名内部类的实例,其持有外面的SampleActivity的引用,所以这导致了SampleActivity无法回收,进行导致SampleActivity持有的很多资源都无法回收,这就是我们常说的内存泄露。

 

注意上面的new Runnable这里也是匿名内部类实现的,同样也会持有SampleActivity的引用,也会阻止SampleActivity被回收。

 

要解决这种问题,思路就是不适用非静态内部类,继承Handler时,要么是放在单独的类文件中,要么就是使用静态内部类。因为静态的内部类不会持有外部类的引用,所以不会导致外部类实例的内存泄露。当你需要在静态内部类中调用外部的Activity时,我们可以使用弱引用来处理。另外关于同样也需要将Runnable设置为静态的成员属性。注意:一个静态的匿名内部类实例不会持有外部类的引用。 修改后不会导致内存泄露的代码如下

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
public class SampleActivity extends Activity {
 
   /**
    * Instances of static inner classes do not hold an implicit
    * reference to their outer class.
    */
   private static class MyHandler extends Handler {
     private final WeakReference<sampleactivity> mActivity;
 
     public MyHandler(SampleActivity activity) {
       mActivity = new WeakReference<sampleactivity>(activity);
     }
 
     @Override
     public void handleMessage(Message msg) {
       SampleActivity activity = mActivity.get();
       if (activity != null ) {
         // ...
       }
     }
   }
 
   private final MyHandler mHandler = new MyHandler( this );
 
   /**
    * Instances of anonymous classes do not hold an implicit
    * reference to their outer class when they are static.
    */
   private static final Runnable sRunnable = new Runnable() {
       @Override
       public void run() { /* ... */ }
   };
 
   @Override
   protected void onCreate(Bundle savedInstanceState) {
     super .onCreate(savedInstanceState);
 
     // Post a message and delay its execution for 10 minutes.
     mHandler.postDelayed(sRunnable, 1000 * 60 * 10 );
     
     // Go back to the previous Activity.
     finish();
   }
}</sampleactivity></sampleactivity>

其实在Android中很多的内存泄露都是由于在Activity中使用了非静态内部类导致的,就像本文提到的一样,所以当我们使用时要非静态内部类时要格外注意,如果其实例的持有对象的生命周期大于其外部类对象,那么就有可能导致内存泄露。个人倾向于使用文章的静态类和弱引用的方法解决这种问题。

本文旨在系统阐述利用MATLAB平台执行多模态语音分离任务的方法,重点围绕LRS3数据集的数据生成流程展开。LRS3(长时RGB+音频语音数据集)作为个规模庞大的视频与音频集合,整合了丰富的视觉与听觉信息,适用于语音识别、语音分离及情感分析等多种研究场景。MATLAB凭借其高效的数值计算能力与完备的编程环境,成为处理此类多模态任务的适宜工具。 多模态语音分离的核心在于综合利用视觉与听觉等多种输入信息来解析语音信号。具体而言,该任务的目标是从混合音频中分离出不同说话人的声音,并借助视频中的唇部运动信息作为辅助线索。LRS3数据集包含大量同步的视频与音频片段,提供RGB视频、单声道音频及对应的文本转录,为多模态语音处理算法的开发与评估提供了重要平台。其高质量与大容量使其成为该领域的关键资源。 在相关资源包中,主要包含以下两部分内容: 1. 说明文档:该文件详细阐述了项目的整体结构、代码运行方式、预期结果以及可能遇到的问题与解决方案。在进行数据处理或模型训练前,仔细阅读此文档对正确理解与操作代码至关重要。 2. 专用于语音分离任务的LRS3数据集版本:解压后可获得原始的视频、音频及转录文件,这些数据将由MATLAB脚本读取并用于生成后续训练与测试所需的数据。 基于MATLAB的多模态语音分离通常遵循以下步骤: 1. 数据预处理:从LRS3数据集中提取每段视频的音频特征与视觉特征。音频特征可包括梅尔频率倒谱系数、感知线性预测系数等;视觉特征则涉及唇部运动的检测与关键点定位。 2. 特征融合:将提取的音频特征与视觉特征相结合,构建多模态表示。融合方式可采用简单拼接、加权融合或基于深度学习模型的复杂方法。 3. 模型构建:设计并实现用于语音分离的模型。传统方法可采用自适应滤波器或矩阵分解,而深度学习方法如U-Net、Transformer等在多模态学习中表现优异。 4. 训练与优化:使用预处理后的数据对模型进行训练,并通过交叉验证与超参数调整来优化模型性能。 5. 评估与应用:采用信号失真比、信号干扰比及信号伪影比等标准指标评估模型性能。若结果满足要求,该模型可进步应用于实际语音分离任务。 借助MATLAB强大的矩阵运算功能与信号处理工具箱,上述步骤得以有效实施。需注意的是,多模态任务常需大量计算资源,处理大规模数据集时可能需要对代码进行优化或借助GPU加速。所提供的MATLAB脚本为多模态语音分离研究奠定了基础,通过深入理解与运用这些脚本,研究者可更扎实地掌握语音分离的原理,从而提升其在实用场景中的性能表现。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值