执行 KSampler 时发生错误:ModelPatcherAndInjector.unpatch_model() 得到意外的关键字参数 ‘unpatch_weights‘ 报错处理方法

本文介绍了如何通过从过时的AnimateDiff-LCM版本升级到最新的AnimateDiff-Evolved版本,来解决可能遇到的技术问题,提供了解决方案的步骤。

通过删除 AnimateDiff-LCM 并安装最新版本的 AnimateDiff-Evolved 解决

#下面的程序运行报错: C:\Users\Administrator\AppData\Local\Programs\Python\Python312\python.exe D:\2025-08-16文生图\千问.py Traceback (most recent call last): File "D:\2025-08-16文生图\千问.py", line 1, in <module> from modelscope import DiffusionPipeline, FlowMatchEulerDiscreteScheduler File "C:\Users\Administrator\AppData\Local\Programs\Python\Python312\Lib\site-packages\modelscope\utils\import_utils.py", line 440, in __getattr__ value = self._extra_import_func(name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Administrator\AppData\Local\Programs\Python\Python312\Lib\site-packages\modelscope\__init__.py", line 134, in try_import_from_hf raise ImportError( ImportError: Cannot import available module of FlowMatchEulerDiscreteScheduler in modelscope, or related packages(['transformers', 'peft', 'diffusers']) 进程已结束,退出代码为 1 ======================================================================================= # Copyright (c) Alibaba, Inc. and its affiliates. import importlib from typing import TYPE_CHECKING from modelscope.utils.import_utils import (LazyImportModule, is_transformers_available) if TYPE_CHECKING: from .exporters import Exporter, TfModelExporter, TorchModelExporter from .hub.api import HubApi from .hub.check_model import check_local_model_is_latest, check_model_is_id from .hub.push_to_hub import push_to_hub, push_to_hub_async from .hub.snapshot_download import snapshot_download, dataset_snapshot_download from .hub.file_download import model_file_download, dataset_file_download from .metrics import ( AccuracyMetric, AudioNoiseMetric, BleuMetric, ImageColorEnhanceMetric, ImageColorizationMetric, ImageDenoiseMetric, ImageInpaintingMetric, ImageInstanceSegmentationCOCOMetric, ImagePortraitEnhancementMetric, ImageQualityAssessmentDegradationMetric, ImageQualityAssessmentMosMetric, LossMetric, Metric, MovieSceneSegmentationMetric, OCRRecognitionMetric, PplMetric, ReferringVideoObjectSegmentationMetric, SequenceClassificationMetric, TextGenerationMetric, TextRankingMetric, TokenClassificationMetric, VideoFrameInterpolationMetric, VideoStabilizationMetric, VideoSummarizationMetric, VideoSuperResolutionMetric, task_default_metrics) from .models import Model, TorchModel from .msdatasets import MsDataset from .pipelines import Pipeline, pipeline from .preprocessors import Preprocessor from .trainers import (EpochBasedTrainer, Hook, Priority, TrainingArgs, build_dataset_from_file) from .utils.constant import Tasks from .utils.hf_util import patch_hub, patch_context, unpatch_hub if is_transformers_available(): from .utils.hf_util import ( AutoModel, AutoProcessor, AutoFeatureExtractor, GenerationConfig, AutoConfig, GPTQConfig, AwqConfig, BitsAndBytesConfig, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoModelForVision2Seq, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForImageClassification, AutoModelForImageTextToText, AutoModelForZeroShotImageClassification, AutoModelForKeypointDetection, AutoModelForDocumentQuestionAnswering, AutoModelForSemanticSegmentation, AutoModelForUniversalSegmentation, AutoModelForInstanceSegmentation, AutoModelForObjectDetection, AutoModelForZeroShotObjectDetection, AutoModelForAudioClassification, AutoModelForSpeechSeq2Seq, AutoModelForMaskedImageModeling, AutoModelForVisualQuestionAnswering, AutoModelForTableQuestionAnswering, AutoModelForImageToImage, AutoModelForImageSegmentation, AutoModelForQuestionAnswering, AutoModelForMaskedLM, AutoTokenizer, AutoModelForMaskGeneration, AutoModelForPreTraining, AutoModelForTextEncoding, AutoImageProcessor, BatchFeature, Qwen2VLForConditionalGeneration, T5EncoderModel, Qwen2_5_VLForConditionalGeneration, LlamaModel, LlamaPreTrainedModel, LlamaForCausalLM, hf_pipeline) else: print( 'transformer is not installed, please install it if you want to use related modules' ) from .utils.hub import create_model_if_not_exist, read_config from .utils.logger import get_logger from .version import __release_datetime__, __version__ else: _import_structure = { 'version': ['__release_datetime__', '__version__'], 'trainers': [ 'EpochBasedTrainer', 'TrainingArgs', 'Hook', 'Priority', 'build_dataset_from_file' ], 'exporters': [ 'Exporter', 'TfModelExporter', 'TorchModelExporter', ], 'hub.api': ['HubApi'], 'hub.snapshot_download': ['snapshot_download', 'dataset_snapshot_download'], 'hub.file_download': ['model_file_download', 'dataset_file_download'], 'hub.push_to_hub': ['push_to_hub', 'push_to_hub_async'], 'hub.check_model': ['check_model_is_id', 'check_local_model_is_latest'], 'metrics': [ 'AudioNoiseMetric', 'Metric', 'task_default_metrics', 'ImageColorEnhanceMetric', 'ImageDenoiseMetric', 'ImageInstanceSegmentationCOCOMetric', 'ImagePortraitEnhancementMetric', 'SequenceClassificationMetric', 'TextGenerationMetric', 'TokenClassificationMetric', 'VideoSummarizationMetric', 'MovieSceneSegmentationMetric', 'AccuracyMetric', 'BleuMetric', 'ImageInpaintingMetric', 'ReferringVideoObjectSegmentationMetric', 'VideoFrameInterpolationMetric', 'VideoStabilizationMetric', 'VideoSuperResolutionMetric', 'PplMetric', 'ImageQualityAssessmentDegradationMetric', 'ImageQualityAssessmentMosMetric', 'TextRankingMetric', 'LossMetric', 'ImageColorizationMetric', 'OCRRecognitionMetric' ], 'models': ['Model', 'TorchModel'], 'preprocessors': ['Preprocessor'], 'pipelines': ['Pipeline', 'pipeline'], 'utils.hub': ['read_config', 'create_model_if_not_exist'], 'utils.logger': ['get_logger'], 'utils.constant': ['Tasks'], 'msdatasets': ['MsDataset'] } from modelscope.utils import hf_util from modelscope.utils.hf_util.patcher import _patch_pretrained_class extra_objects = {} attributes = dir(hf_util) imports = [attr for attr in attributes if not attr.startswith('__')] for _import in imports: extra_objects[_import] = getattr(hf_util, _import) def try_import_from_hf(name): hf_pkgs = ['transformers', 'peft', 'diffusers'] module = None for pkg in hf_pkgs: try: module = getattr(importlib.import_module(pkg), name) break except Exception: # noqa pass if module is not None: module = _patch_pretrained_class([module], wrap=True) else: raise ImportError( f'Cannot import available module of {name} in modelscope,' f' or related packages({hf_pkgs})') return module[0] import sys sys.modules[__name__] = LazyImportModule( __name__, globals()['__file__'], _import_structure, module_spec=__spec__, extra_objects=extra_objects, extra_import_func=try_import_from_hf, )
08-17
我在测试代码遇到了报错:Traceback (most recent call last): File "c:/Users/周弋文/Desktop/demo/text4.py", line 1, in <module> from paddleocr import PaddleOCR File "C:\Users\周弋文\AppData\Local\Programs\Python\Python38\lib\site-packages\paddleocr\__init__.py", line 15, in <module> from paddlex.inference.utils.benchmark import benchmark File "C:\Users\周弋文\AppData\Local\Programs\Python\Python38\lib\site-packages\paddlex\__init__.py", line 49, in <module> from .inference import create_pipeline, create_predictor File "C:\Users\周弋文\AppData\Local\Programs\Python\Python38\lib\site-packages\paddlex\inference\__init__.py", line 16, in <module> from .models import create_predictor File "C:\Users\周弋文\AppData\Local\Programs\Python\Python38\lib\site-packages\paddlex\inference\models\__init__.py", line 22, in <module> from ..utils.official_models import official_models File "C:\Users\周弋文\AppData\Local\Programs\Python\Python38\lib\site-packages\paddlex\inference\utils\official_models.py", line 25, in <module> import modelscope File "C:\Users\周弋文\AppData\Local\Programs\Python\Python38\lib\site-packages\modelscope\__init__.py", line 112, in <module> from modelscope.utils import hf_util File "C:\Users\周弋文\AppData\Local\Programs\Python\Python38\lib\site-packages\modelscope\utils\hf_util\__init__.py", line 2, in <module> from .patcher import patch_context, patch_hub, unpatch_hub File "C:\Users\周弋文\AppData\Local\Programs\Python\Python38\lib\site-packages\modelscope\utils\hf_util\patcher.py", line 15, in <module> from modelscope.utils.repo_utils import (CommitInfo, CommitOperation, File "C:\Users\周弋文\AppData\Local\Programs\Python\Python38\lib\site-packages\modelscope\utils\repo_utils.py", line 18, in <module> from modelscope.hub.utils.utils import convert_timestamp File "C:\Users\周弋文\AppData\Local\Programs\Python\Python38\lib\site-packages\modelscope\hub\utils\utils.py", line 8, in <module> import zoneinfo ModuleNotFoundError: No module named 'zoneinfo'
09-26
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值