Description
问给定的多边形中是否存在一点CC,使得对于多边形内任意一点都有线段CPCP在多边形内。
Solution
发现题目的实质是求该多边形的各边是否存在半平面交,上板子即可。
Source
/****************************
* Au: Hany01
* Prob: POJ3130 How I Mathematician Wonder What You Are!
* Date: Feb 13th, 2018
* Email: hany01@foxmail.com
****************************/
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<set>
#include<list>
#include<cassert>
#include<map>
#include<queue>
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
typedef vector<int> VI;
#define rep(i , j) for (int i = 0 , i##_end_ = j; i < i##_end_ ; ++ i)
#define For(i , j , k) for (int i = (j) , i##_end_ = (k) ; i <= i##_end_ ; ++ i)
#define Fordown(i , j , k) for (int i = (j) , i##_end_ = (k) ; i >= i##_end_ ; -- i)
#define Set(a , b) memset(a , b , sizeof(a))
#define SZ(a) ((int)(a.size()))
#define ALL(a) a.begin(), a.end()
#define pb(a) push_back(a)
#define mp(a, b) make_pair(a, b)
#define INF (0x3f3f3f3f)
#define INF1 (2139062143)
#define Mod (1000000007)
#define y1 wozenmezhemecaia
#ifdef hany01
#define debug(...) fprintf(stderr , __VA_ARGS__)
#else
#define debug(...)
#endif
inline void File() {
#ifdef hany01
freopen("poj3130.in" , "r" , stdin);
freopen("poj3130.out" , "w" , stdout);
#endif
}
template<typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
inline int read() {
register char c_; register int _ , __;
for (_ = 0 , __ = 1 , c_ = getchar() ; !isdigit(c_) ; c_ = getchar()) if (c_ == '-') __ = -1;
for ( ; isdigit(c_) ; c_ = getchar()) _ = (_ << 1) + (_ << 3) + (c_ ^ 48);
return _ * __;
}
const double eps = 1e-9;
inline int dcmp(double x) { if (fabs(x) < eps) return 0; return x < 0 ? -1 : 1; }
struct Point
{
double x, y;
Point(double x = 0, double y = 0): x(x), y(y) {}
};
typedef Point Vector;
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x * p, A.y * p); }
Vector operator / (Vector A, double p) { return Vector(A.x / p, A.y / p); }
double Cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; }
double Angle(Vector v) { return atan2(v.y, v.x); }
struct Line
{
Point P; Vector v; double ang;
Line(Point P = Point(0, 0), Vector v = Vector(0, 0)): P(P), v(v) { ang = Angle(v); }
};
bool operator < (const Line& A, const Line& B) { return A.ang < B.ang; }
const int maxn = 55;
Point p[maxn];
Line L[maxn];
int n;
inline bool OnLeft(Line L, Point P) { return dcmp(Cross(L.v, P - L.P)) > 0; }
inline Point LineIntersection(Line A, Line B) {
double t = Cross(B.v, A.P - B.P) / Cross(A.v, B.v);
return A.P + A.v * t;
}
inline int HalfplaneIntersection(Line* L, int n)
{
sort(L + 1, L + 1 + n);
int head, tail;
static Point p[maxn];
static Line q[maxn];
q[head = tail = 1] = L[1];
For(i, 2, n) {
while (head < tail && !OnLeft(L[i], p[tail - 1])) -- tail;
while (head < tail && !OnLeft(L[i], p[head])) ++ head;
q[++ tail] = L[i];
if (!dcmp(Cross(q[tail].v, q[tail - 1].v))) {
-- tail;
if (OnLeft(q[tail], L[i].P)) q[tail] = L[i];
}
if (head < tail) p[tail - 1] = LineIntersection(q[tail - 1], q[tail]);
}
while (head < tail && !OnLeft(q[head], p[tail - 1])) -- tail;
if (head + 1 >= tail) return 0;
p[tail] = LineIntersection(q[head], q[tail]);
return 1;
}
int main()
{
File();
while (scanf("%d", &n) != EOF && n) {
For(i, 1, n) p[i].x = read(), p[i].y = read();
p[n + 1] = p[1];
For(i, 1, n) L[i] = Line(p[i], p[i + 1] - p[i]);
if (HalfplaneIntersection(L, n)) puts("1"); else puts("0");
}
return 0;
}