POJ2528 Mayor's posters 线段树

本文介绍了一道名为“Mayor's posters”的编程题,该题目要求使用线段树解决竞选海报放置后的可见性问题。文章详细解释了问题背景、输入输出格式,并提供了完整的代码实现及关键步骤说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

POJ 2528 Mayor's posters 线段树

Mayor's posters
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 39344
Accepted: 11424

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules: 
  • Every candidate can place exactly one poster on the wall. 
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown). 
  • The wall is divided into segments and the width of each segment is one byte. 
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed. 

The picture below illustrates the case of the sample input.

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source


吐槽一下这道题 做过一模一样的在计蒜客上 时间也一样 计蒜客的数据用暴力就能过 在POJ上不行 没办法 必须要写个线段树了 
那么这题离散化的时候要注意一个问题 由于他是一个广告版 如果两个点不相邻 那么他中间肯定有一块区域 而在我们的离散化步骤里面 我们必须手动加上一个这个点 代表是这个区域 因为你不加的话 离散化会出问题
怎么加点呢? 我可以让左端点+1 这样我二分查找的时候是不是找区间单调 所以 满足条件 能用二分查找找原始下标

看query函数 查询的时候返回条件为啥是 col[p]|l==r? l==r好理解 你找道叶子区间了(我们这是区间树)那么叶子区间有颜色 我们就可以cover[col[p]] = 1,代表染上这个色了 如果没颜色呢?没关系 cover[0] = 1,我们求和不加cover[0],

col[p]是啥意思呢?是这区间已经被这个染色了 所以可以直接标记

为啥不down操作?

没意义 你这是覆盖一个颜色 你down下去儿子区间都是这颜色 你就可以直接在爸爸的时候就return了 down也没问题

对时间没有影响


#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

#define lson l , m , o << 1
#define rson m + 1 , r , o << 1 | 1
const int maxN = 10005 ;

int col[maxN << 4] ;
bool cover[maxN] ;
int a[maxN << 2] , b[maxN << 2];
int LL[maxN] , RR[maxN] ;

int Unique ( int *a , int n ) {//离散,返回最后数据的个数
	int cnt = 0 ;
	sort ( a , a + n ) ;
	b[0] = a[0] ;
	for ( int i = 1 ; i < n ; ++ i ) {//unique
		if ( a[i] != b[cnt] ) b[++ cnt] = a[i] ;
	}
	n = cnt + 1 ;
	cnt = 0 ;
	for ( int i = 1 ; i < n ; ++ i) {//添加中间元素
		if ( b[i] != a[cnt] + 1 ) {
			a[cnt + 1] = a[cnt] + 1 ;//确保单调性,以便二分查找
			++ cnt ;
		}
		a[++ cnt] = b[i] ;
	}
	return cnt + 1 ;
}

int Binary_Search ( int *a , int key , int n ) {
	int l = 0 , r = n ;
	while ( l <= r ) {
		int m = ( l + r ) / 2 ;
		if ( key <= a[m] ) r = m-1 ;
		else l = m + 1 ;
	}
	return l ;
}

void down ( int p,int l,int r ) {
	if ( col[p] ) {
		col[p << 1] = col[p << 1 | 1] = col[p] ;
		col[p] = 0 ;
	}
}

void change ( int p,int l,int r,int x,int y,int v ) {
	if ( x<= l && r <= y ) {
		col[p] = v ;
		return ;
	}
	down(p,l,r);
	int mid = ( l + r ) >> 1 ;
	if ( x <= mid ) change ( p*2,l,mid,x,y,v) ;
	if ( y>mid ) change ( p*2+1,mid+1,r,x,y,v) ;
}

void query ( int p,int l , int r  ) {
	if ( col[p] || l == r ) {
		cover[col[p]] = 1 ;
		//printf ( "l = %d , r = %d , col[%d] = %d\n" , l , r , o , col[o] ) ;
		return ;
	}
	//down ( p ) ;很明显不需要了,因为只要不同的颜色,而PushDown下去的必定是同种颜色
	int mid = ( l + r ) >> 1 ;
	query ( p*2,l,mid ) ;
	query ( p*2+1,mid+1,r ) ;
}

void work () {
	int n , l , r , c , cnt , color ;
	scanf ( "%d" , &n ) ;
	memset(col,0,sizeof(col));
	memset(cover,0,sizeof(cover));
	cnt = 0 ;
	for ( int i = 1 ; i <= n ; ++ i ) {
		scanf ( "%d%d" , &LL[i] , &RR[i] ) ;
		a[cnt ++] = LL[i] ;
		a[cnt ++] = RR[i] ;
	}
	cnt = Unique ( a , cnt ) ;
	for ( int i = 1 ; i <= n ; ++ i ) {
		l = Binary_Search ( a , LL[i] , cnt ) ;
		r = Binary_Search ( a , RR[i] , cnt ) ;
		//printf ( "l = %d r = %d\n" , l , r ) ;
		change ( 1,1,cnt,l+1,r+1,i ) ;
	}
	query ( 1,1,cnt) ;
	color = 0 ;
	for ( int i = 1 ; i <= n ; ++ i ) {
		color += cover[i] ;
	}
	printf ( "%d\n" , color ) ;
}
int main () {
	int T ;
	scanf ( "%d" , &T ) ;
	while ( T -- ) {
		work () ;
	}
	return 0 ;
}


内容概要:本文档主要展示了C语言中关于字符串处理、指针操作以及动态内存分配的相关代码示例。首先介绍了如何实现键值对(“key=value”)字符串的解析,包括去除多余空格和根据键获取对应值的功能,并提供了相应的测试用例。接着演示了从给定字符串中分离出奇偶位置字符的方法,并将结果分别存储到两个不同的缓冲区中。此外,还探讨了常量(const)修饰符在变量和指针中的应用规则,解释了不同类型指针的区别及其使用场景。最后,详细讲解了如何动态分配二维字符数组,并实现了对这类数组的排序与释放操作。 适合人群:具有C语言基础的程序员或计算机科学相关专业的学生,尤其是那些希望深入理解字符串处理、指针操作以及动态内存管理机制的学习者。 使用场景及目标:①掌握如何高效地解析键值对字符串并去除其中的空白字符;②学会编写能够正确处理奇偶索引字符的函数;③理解const修饰符的作用范围及其对程序逻辑的影响;④熟悉动态分配二维字符数组的技术,并能对其进行有效的排序和清理。 阅读建议:由于本资源涉及较多底层概念和技术细节,建议读者先复习C语言基础知识,特别是指针和内存管理部分。在学习过程中,可以尝试动手编写类似的代码片段,以便更好地理解和掌握文中所介绍的各种技巧。同时,注意观察代码注释,它们对于理解复杂逻辑非常有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值