Spark Streaming读取kafka中的数据

本文介绍了如何使用Spark Streaming从Kafka中读取数据,创建topic并插入测试数据,展示了通过Scala实现的消费者配置和数据处理过程。

1、创建kafka的topic并且插入数据

  • 创建topic
[root@henry ~]# kafka-topics.sh --zookeeper 192.168.153.200:2181 --create --topic mmm --replication-factor 1 --partitions 1
  • 插入生产数据
[root@henry ~]# kafka-console-producer.sh --broker-list 192.168.153.200:9092 --topic mmm
>aaa
>bbb
>ccc
>hello,world

2、使用sparkstreaming读取kafka中的数据

  • 创建maven的quickstart工程,并且导入以下依赖
<dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.11</version>
      <scope>test</scope>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka -->
    <!-- 2.11是scala的版本 -->
    <dependency>
      <groupId>org.apache.kafka</groupId>
      <artifactId>kafka_2.11</artifactId>
      <version>2.0.0</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients -->
    <dependency>
      <groupId>org.apache.kafka</groupId>
      <artifactId>kafka-clients</artifactId>
      <version>2.0.0</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_2.11</artifactId>
      <version>2.3.4</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-sql_2.11</artifactId>
      <version>2.3.4</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-graphx_2.11</artifactId>
      <version>2.3.4</version>
    </dependency>
    <dependency>
      <groupId>com.fasterxml.jackson.core</groupId>
      <artifactId>jackson-databind</artifactId>
      <version>2.6.6</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-streaming_2.11</artifactId>
      <version>2.3.4</version>
    </dependency>
    <dependency><!-- Spark Streaming Kafka -->
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
      <version>2.3.4</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/com.google.guava/guava -->
    <dependency>
      <groupId>com.google.guava</groupId>
      <artifactId>guava</artifactId>
      <version>14.0.1</version>
    </dependency>
  </dependencies>
  • 代码测试
package com.njbdqn

import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

object MyDataHandler {
  def main(args: Array[String]): Unit = {
    //准备streamContext
    val conf = new SparkConf().setMaster("local[*]").setAppName("ttt")
      .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
    val sc = new SparkContext(conf);
    val ssc = new StreamingContext(sc,Seconds(5))
    ssc.checkpoint("E:\\BigDataStudy\\SparkStreaming\\cks1")
    //准备读取kafka参数
    val kafkaParams = Map(
      ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "192.168.153.200:9092",
      //组号,多次执行时需要将指针重置或者更新组号
      ConsumerConfig.GROUP_ID_CONFIG -> "henry1",
      //设置最大拉取数据时间为1秒,每一秒拉取一次数据
      ConsumerConfig.MAX_POLL_RECORDS_CONFIG -> "1000",
      ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
      ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
      //设置开启自动提交
      ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG -> "true",
      //设置指针偏移重置从开始的数据开始
      ConsumerConfig.AUTO_OFFSET_RESET_CONFIG -> "earliest"
    )
    //读取kafka数据
    val ds=KafkaUtils.createDirectStream(ssc,LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String,String](Set("mmm"),kafkaParams))
    ds.print()
    ssc.start()
    ssc.awaitTermination()
  }
}
  • 结果展示
-------------------------------------------
Time: 1607942710000 ms
-------------------------------------------
ConsumerRecord(topic = mmm, partition = 0, offset = 0, CreateTime = 1607936175351, serialized key size = -1, serialized value size = 3, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = aaa)
ConsumerRecord(topic = mmm, partition = 0, offset = 1, CreateTime = 1607936176513, serialized key size = -1, serialized value size = 3, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = bbb)
ConsumerRecord(topic = mmm, partition = 0, offset = 2, CreateTime = 1607936178581, serialized key size = -1, serialized value size = 3, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = ccc)
ConsumerRecord(topic = mmm, partition = 0, offset = 3, CreateTime = 1607936182416, serialized key size = -1, serialized value size = 11, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = hello,world)

-------------------------------------------
Time: 1607942715000 ms
-------------------------------------------

-------------------------------------------
Time: 1607942720000 ms
-------------------------------------------
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值