Crash的数字表格
今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张NM的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个45的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。
Input
输入的第一行包含两个正整数,分别表示N和M。
Output
输出一个正整数,表示表格中所有数的和mod 20101009的值。
Sample Input
4 5
Sample Output
122
【数据规模和约定】
100%的数据满足N, M ≤ 10^7。
题解
n < m
A
n
s
=
∑
i
=
1
n
∑
j
=
1
m
l
c
m
(
i
,
j
)
=
∑
i
=
1
n
∑
j
=
1
m
i
j
g
c
d
(
i
,
j
)
=
∑
d
=
1
n
∑
i
=
1
n
∑
j
=
1
m
i
j
d
[
g
c
d
(
i
,
j
)
=
=
d
]
=
∑
d
=
1
n
∑
i
=
1
n
/
d
∑
j
=
1
m
/
d
i
j
d
[
g
c
d
(
i
,
j
)
=
=
1
]
=
∑
d
=
1
n
d
∑
i
=
1
n
/
d
∑
j
=
1
m
/
d
i
j
[
g
c
d
(
i
,
j
)
=
=
1
]
令
:
S
u
m
(
n
,
m
)
=
∑
i
=
1
n
∑
j
=
1
m
i
j
f
(
x
)
=
∑
i
=
1
n
∑
j
=
1
m
i
j
[
g
c
d
(
i
,
j
)
=
=
x
]
g
(
x
)
=
∑
i
=
1
n
∑
j
=
1
m
i
j
[
x
∣
g
c
d
(
i
,
j
)
]
=
x
2
∑
i
=
1
n
/
x
∑
j
=
1
m
/
x
i
j
[
1
∣
g
c
d
(
i
,
j
)
]
=
∑
x
∣
d
n
f
(
d
)
则
:
f
(
x
)
=
∑
x
∣
d
n
μ
(
d
x
)
g
(
d
)
f
(
1
)
=
∑
d
=
1
n
μ
(
d
)
d
2
S
u
m
(
n
d
,
m
d
)
A
n
s
=
∑
d
=
1
n
d
∑
i
=
1
n
/
d
∑
j
=
1
m
/
d
i
j
[
g
c
d
(
i
,
j
)
=
=
1
]
=
∑
d
=
1
n
d
∑
i
=
1
n
/
d
μ
(
i
)
i
2
S
u
m
(
n
i
d
,
m
i
d
)
\begin{aligned} Ans &= {\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)}\\ &={\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{gcd(i,j)}}\\ &={\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{d}[gcd(i, j)==d]}\\ &={\sum_{d=1}^{n}\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}{ijd}[gcd(i, j)==1]}\\ &={\sum_{d=1}^{n}d\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}{ij}[gcd(i, j)==1]}\\ 令:Sum(n,m) &={\sum_{i=1}^{n}\sum_{j=1}^{m}ij}\\ f(x) &= {\sum_{i=1}^{n}\sum_{j=1}^{m}ij[gcd(i,j)==x]}\\ g(x)&={\sum_{i=1}^{n}\sum_{j=1}^{m}ij[x|gcd(i,j)]}\\ &={x^2\sum_{i=1}^{n/x}\sum_{j=1}^{m/x}ij[1|gcd(i,j)]}\\ &={\sum_{x|d}^{n}f(d)}\\ 则:f(x)&={\sum_{x|d}^{n}\mu(\frac{d}{x})g(d)}\\ f(1)&={\sum_{d=1}^{n}\mu(d)d^2{Sum(\frac{n}{d},\frac{m}{d})}}\\ Ans &={\sum_{d=1}^{n}d\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}{ij}[gcd(i, j)==1]}\\ &=\sum_{d=1}^{n}d{\sum_{i=1}^{n/d}\mu(i)i^2{Sum(\frac{n}{id},\frac{m}{id})}}\\ \end{aligned}
Ans令:Sum(n,m)f(x)g(x)则:f(x)f(1)Ans=i=1∑nj=1∑mlcm(i,j)=i=1∑nj=1∑mgcd(i,j)ij=d=1∑ni=1∑nj=1∑mdij[gcd(i,j)==d]=d=1∑ni=1∑n/dj=1∑m/dijd[gcd(i,j)==1]=d=1∑ndi=1∑n/dj=1∑m/dij[gcd(i,j)==1]=i=1∑nj=1∑mij=i=1∑nj=1∑mij[gcd(i,j)==x]=i=1∑nj=1∑mij[x∣gcd(i,j)]=x2i=1∑n/xj=1∑m/xij[1∣gcd(i,j)]=x∣d∑nf(d)=x∣d∑nμ(xd)g(d)=d=1∑nμ(d)d2Sum(dn,dm)=d=1∑ndi=1∑n/dj=1∑m/dij[gcd(i,j)==1]=d=1∑ndi=1∑n/dμ(i)i2Sum(idn,idm)
-
μ
(
i
)
i
2
\mu(i)i^2
μ(i)i2用前缀和预处理
求f(x}的时候用分块可以在 n {\sqrt{n}} n完成
求Sum(x,y)的时候用分块也可以在 n {\sqrt{n}} n完成
所以一次询问可以在O(n)的时间解决 - 如果是多次询问(10000次询问)
需要继续化简
令 T = i d , 考 虑 对 T 进 行 分 块 A n s = ∑ d = 1 n d ∑ i = 1 n / d μ ( i ) i 2 S u m ( n T , m T ) = ∑ T = 1 n S u m ( n T , m T ) ∑ i ∣ T n μ ( i ) i 2 T i \begin{aligned} 令T&=id,考虑对T进行分块\\ Ans &=\sum_{d=1}^{n}d{\sum_{i=1}^{n/d}\mu(i)i^2{Sum(\frac{n}{T},\frac{m}{T})}}\\ &={\sum_{T=1}^{n}Sum(\frac{n}{T}, \frac{m}{T})\sum_{i|T}^{n}\mu(i)i^2\frac{T}{i}} \end{aligned} 令TAns=id,考虑对T进行分块=d=1∑ndi=1∑n/dμ(i)i2Sum(Tn,Tm)=T=1∑nSum(Tn,Tm)i∣T∑nμ(i)i2iT -
∑
i
∣
T
n
μ
(
i
)
i
2
T
i
\sum_{i|T}^{n}\mu(i)i^2\frac{T}{i}
∑i∣Tnμ(i)i2iT是积性函数可以用线性筛预处理,令t = i × prime[j]
- 线性筛的时候如果i % prime[j] = 0,则t对应的莫比乌斯函数为0,prime[j]的贡献为g[i] * prime[j]
- i % prime[j] != 0,符合积形函数直接相乘
- i 为素数,
g
[
i
]
=
i
−
i
2
g[i] = i - i^2
g[i]=i−i2
Sum(x,y)可以在 n \sqrt{n} n完成
// 单次询问 O(n)
#include <bits/stdc++.h>
#define LL long long
#define P pair<int, int>
#define lowbit(x) (x & -x)
#define mem(a, b) memset(a, b, sizeof(a))
#define rep(i, a, n) for (int i = a; i <= n; ++i)
#define maxn 10000006
#define mid ((l + r) >> 1)
#define lc rt<<1
#define rc rt<<1|1
using namespace std;
int mod = 20101009;
int mo[maxn], prime[maxn], g[maxn];
bool vis[maxn];
int Sum(int x) {
return (1ll * (1 + x) * x / 2) % mod;
}
void init() {
mo[1] = 1;
vis[1] = 1;
int len = 0;
for (int i = 2; i < maxn; ++i) {
if (!vis[i]) {
prime[len++] = i;
mo[i] = -1;
}
for (int j = 0; j < len && 1ll * i * prime[j] < maxn; ++j) {
int t = i * prime[j];
vis[t] = 1;
if (i % prime[j] == 0) {
mo[t] = 0;
break;
}
mo[t] = -mo[i];
}
}
}
int solve(int n, int m) {
int i = 1, j;
int sum = 0;
while (i <= n) {
j = min(n / (n/i), m / (m/i));
sum += (1ll * (g[j] - g[i-1]) * Sum(n/i) % mod) * Sum(m/i) % mod;
sum %= mod;
i = j + 1;
}
return sum;
}
int main() {
#ifndef ONLINE_JUDGE
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
#endif
init();
for (int i = 1; i < maxn; ++i) {
g[i] = 1ll * i * i * mo[i] % mod;
g[i] = (g[i] + g[i-1]) % mod;
}
int n, m;
scanf("%d %d", &n, &m);
if (n > m) swap(n, m);
int i = 1, j;
int ans = 0;
while (i <= n) {
j = min(n/(n/i), m/(m/i));
int t = 1ll * (i + j) * (j - i + 1) / 2 % mod;
ans += 1ll * solve(n/i, m/i) * t % mod;
ans %= mod;
i = j + 1;
}
printf("%d\n", (ans + mod) % mod);
return 0;
}
// 单次询问O(sqrt(n))
#include <bits/stdc++.h>
#define LL long long
#define P pair<int, int>
#define lowbit(x) (x & -x)
#define mem(a, b) memset(a, b, sizeof(a))
#define rep(i, a, n) for (int i = a; i <= n; ++i)
#define maxn 10000006
#define mid ((l + r) >> 1)
#define lc rt<<1
#define rc rt<<1|1
using namespace std;
int mod = 20101009;
int mo[maxn], prime[maxn], g[maxn];
bool vis[maxn];
int Sum(int x) {
return (1ll * (1 + x) * x / 2) % mod;
}
void init() {
// mo[1] = 1;
g[1] = 1;
vis[1] = 1;
int len = 0;
for (int i = 2; i < maxn; ++i) {
if (!vis[i]) {
prime[len++] = i;
// mo[i] = -1;
g[i] = (i - 1ll * i * i % mod) % mod;
}
for (int j = 0; j < len && 1ll * i * prime[j] < maxn; ++j) {
int t = i * prime[j];
vis[i * prime[j]] = 1;
if (i % prime[j] == 0) {
// mo[t] = 0;
g[t] = 1ll * g[i] * prime[j] % mod;
break;
}
// mo[t] = -mo[i];
g[t] = 1ll * g[i] * g[prime[j]] % mod;
}
}
for (int i = 2; i < maxn; ++i) {
g[i] = (g[i] + g[i-1]) % mod;
}
}
int main() {
#ifndef ONLINE_JUDGE
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
#endif
init();
int n, m;
scanf("%d %d", &n, &m);
if (n > m) swap(n, m);
int i = 1, j;
int ans = 0;
while (i <= n) {
j = min(n/(n/i), m/(m/i));
ans += (1ll * Sum(n/i) * Sum(m/i) % mod) * (g[j] - g[i-1]) % mod;
ans %= mod;
i = j + 1;
}
printf("%d\n", (ans + mod) % mod);
return 0;
}