Information from parts of words: Subword Models

探讨了在神经机器翻译(NMT)中如何利用字符级、子词级模型处理未登录词(OOV),介绍了字符级模型、Subword模型如BytePairEncoding(BPE)、混合字符与词级模型及FastText等技术,展示了这些方法在翻译任务中的应用与优势。

1. 有关语言学(linguistics)的启发

语音学(Phonetics)是一种非常基本的理论,只要是正常人,有着相同的人体器官和相同的发声结构,就会遵循着相同的发声规则和原理。
语音体系(Phonology)是有语义的声音的合集,各国各文明的人都会制定自己的语音体系。
音素(Phoneme)是语音中划分出来的最小的语音单位,分为元音和辅音
国际音标(由音素构成)按理来说可以表示所有的语音,但是会发现好多语音是没有语义的,这时我们采取的办法就是看音素的下一级(part of words)。
同样的思想我们可以用在深度学习上,如果我们在做翻译任务(Neural Machine Translation)时发现一些没有含义的单词(也就是不在词汇库中的单词),我们可以通过找比单词更基本的成分来解决问题。
现实生活中做翻译任务时我们确实需要处理很大的,很开放的词汇(所以上述讨论是有意义的):
非常丰富的词形
音译的单词(例如人名)
非正式的拼写()

2. 字符级模型(Character-Level Model)

有了上面的分析,我们可以想到,使用比word更基本的组成来做NMT任务,于是首先我们很容易想到字符级的模型。我们有两种方法来实现字符级的模型:

a)先生成character-embedding, 然后为那些没出现在词汇库中的单词(out of vocabulary后面用OOV表示)生成word-embedding, 即使用character-embedding来组成word-embedding以解决OOV问题。
b)直接把语言当成字符处理,只生成character-embedding,不考虑word级别。
这两种方法都被证明是成功的。后续也有很多的工作使用字符级的模型来解决NMT任务。但这些任务有一些共同的缺点,由于从单词替换成字符导致处理的序列变长,速度变慢;由于序列变长,数据变得稀疏,数据之间的联系的距离变大,不利于学习。于是2017年,Jason Lee, Kyunghyun Cho, Thomas Hoffmann发表了论文Fully Character-Level Neural Machine Translation without Explicit Segmentation 解决了这些问题。

This is encoder, decoder is a similar char_level GRU
输入的character首先做一个embedding, 然后分别与大小为3,4,5的filter进行卷积运算,就相当于3-grams, 4-grams和5-grams。之后进行max-pooling操作,相当与选出了有语义信息的segment-embedding。之后将这些embedding送入Highway Network(相当于resnet, 解决了深层神经网络不容易训练的问题)后再通过一个单层的双向GRU,得到最终的encoder的output。之后经过一个character-level的GRU(作为decoder)得到最终结果。

还有一篇2018年的文章表明在一些复杂的语言中(比如捷克语),character级别的模型会大幅提高翻译准确率,但在较为简单的语言中(如英语法语),character级别的模型提升效果不显著。同时,研究发现在模型较小时word-level的模型效果更好,在模型较大时character-level 的效果更好。

总之,现有的character-level的模型在NMT任务上可以更好的处理OOV的问题,可以理解为我们可以学习一些字符级别的语义信息帮助我们进行翻译。

3. Subword Model: Byte Pair Encoding

所谓subword,就是取一个介于字符和单词之间成分为基本单元建立的模型。而所谓Byte Pair Encoding(一下简称BPE),就是寻找经常出现在一起的Byte对,合并成一个新的Byte加入词汇库中。即若给定了文本库,若我们的初始词汇库包含所有的单个字符,则我们会不断的将出现频率最高的n-gram的pair作为新的n-gram加入词汇库中,直到达到我们的要求。
在这里插入图片描述

可见此时出现频率最高的n-gram pair是“e,s”,出现了9次,因此我们将“es”作为新词加入到词汇库中同时更新文本库。此时词汇库和文本库如下。
在这里插入图片描述

这时词汇库中出现频率最高的n-gram pair是“es,t”,出现了9次,因此我们将“est”加入词汇库中同时更新文本库。此时词汇库和文本库如下。
在这里插入图片描述
依次类推,可以逐渐的通过增加新的n-gram的方式达到我们的目标。对于现实生活中有很多词汇量非常大的task,这种通过BPE逐步建立词汇库的方式就显得非常有用了。

Google 的NMT模型也是从BPE演化而来,一个叫wordpiece model,一个叫sentencepiece model。其中wordpiece model每次不是选取出现频率最高的n-gram, 而是每次选取能使得其所使用的语言模型的复杂度减少最多的n-gram。而sentencepiece model则是将词与词之间的空白也作为一种单词,这样整个sentence就可以直接进行处理而不需要预处理成单词后再embedding。

4. Hybrid character and word-level models

核心思想:大部分时候都使用word-level的模型来做translate,只有在遇到rare or unseen的words的时候才会使用character-level的模型协助。这种做法产生了非常好的效果。
在这里插入图片描述

比如该例子中,若cute是一个out of vocabulary的单词,我们就需要使用character-level的模型去处理。在decode过程中,如果发现,说明需要character-level的decode, 最后的损失函数是word-level部分和character-level部分的加权叠加。

同时,值得一提的是decoding过程中,在word-level部分和character-level部分均使用了beam search的方法,选取topK可能性的字符或单词。

这种混合模型在WMT’15的库上取得了SOTA的结果。

5.FastText

我们知道在word2vec方法中我们基于word-level的模型来得到每一个单词的embedding,但是对于含有许多OOV单词的文本库word2vec的效果并不好。由此很容易联想到,如果将subword的思想融入到word2vec中是不是会产生更好的效果呢?

FastText方法就是汲取了subword的思想,它将每个单词转变为对于character的n-gram和该单词本身的集合。例如,对于单词“”,以及n=3。

则集合可以表示为{<wh,whe,her,ere,re>,}(其中<>代表单词的开始与结束)。对于每个单词 [公式] ,其对应集合可用 [公式] 来表示。设该集合每个n-gram表示为 [公式] ,则每个单词可以表示为其所有n-gram矢量和的形式,则center word和context word 间的相似度可表示为

在这里插入图片描述

的形式,于是就可以使用原有的word2vec算法来训练得到对应单词的embedding。其保证了算法速度快的同时,解决了OOV的问题,是很好的算法。

检查代码是否合理是否错误,并评价代码,计算运行峰值、准确率、效率速度,已两人对话十分钟为例。 import os import sys import re import json import gc import time import concurrent.futures import traceback import numpy as np import librosa import torch import psutil from typing import List, Dict, Tuple, Optional from threading import RLock, Semaphore from pydub import AudioSegment from pydub.silence import split_on_silence from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from transformers import AutoModelForSequenceClassification, AutoTokenizer from torch.utils.data import TensorDataset, DataLoader from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QPushButton, QLabel, QLineEdit, QTextEdit, QFileDialog, QProgressBar, QGroupBox, QMessageBox, QListWidget, QSplitter, QTabWidget, QTableWidget, QTableWidgetItem, QHeaderView, QAction, QMenu, QToolBar, QComboBox, QSpinBox, QDialog, QDialogButtonBox) from PyQt5.QtCore import QThread, pyqtSignal, Qt from PyQt5.QtGui import QFont, QColor, QIcon # ====================== 资源监控器 ====================== class ResourceMonitor: def __init__(self): self.gpu_available = torch.cuda.is_available() def memory_percent(self) -> Dict[str, float]: try: result = {"cpu": psutil.virtual_memory().percent} if self.gpu_available: allocated = torch.cuda.memory_allocated() / (1024 ** 3) total = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3) result["gpu"] = (allocated / total) * 100 if total > 0 else 0 return result except Exception as e: print(f"内存监控失败: {str(e)}") return {"cpu": 0, "gpu": 0} # ====================== 方言处理器(简化版) ====================== class DialectProcessor: # 合并贵州方言和普通话关键词 KEYWORDS = { "opening": ["您好", "很高兴为您服务", "请问有什么可以帮您", "麻烦您喽", "请问搞哪样", "有咋个可以帮您", "多谢喽"], "closing": ["感谢来电", "祝您生活愉快", "再见", "搞归一喽", "麻烦您喽", "再见喽", "慢走喽"], "forbidden": ["不知道", "没办法", "你投诉吧", "随便你", "搞不成", "没得法", "随便你喽", "你投诉吧喽"], "salutation": ["先生", "女士", "小姐", "老师", "师傅", "哥", "姐", "兄弟", "妹儿"], "reassurance": ["非常抱歉", "请不要着急", "我们会尽快处理", "理解您的心情", "实在对不住", "莫急哈", "马上帮您整", "理解您得很"] } # 贵州方言到普通话的固定映射 DIALECT_MAPPING = { "恼火得很": "非常生气", "鬼火戳": "很愤怒", "搞不成": "无法完成", "没得": "没有", "搞哪样嘛": "做什么呢", "归一喽": "完成了", "咋个": "怎么", "克哪点": "去哪里", "麻烦您喽": "麻烦您了", "多谢喽": "多谢了", "憨包": "傻瓜", "归一": "结束", "板扎": "很好", "鬼火冒": "非常生气", "背时": "倒霉", "吃豁皮": "占便宜" } # Trie树根节点 _trie_root = None class TrieNode: def __init__(self): self.children = {} self.is_end = False self.value = "" @classmethod def build_dialect_trie(cls): """构建方言转换的Trie树""" if cls._trie_root is not None: return cls._trie_root root = cls.TrieNode() # 按长度降序排序,确保最长匹配优先 for dialect, standard in sorted(cls.DIALECT_MAPPING.items(), key=lambda x: len(x[0]), reverse=True): node = root for char in dialect: if char not in node.children: node.children[char] = cls.TrieNode() node = node.children[char] node.is_end = True node.value = standard cls._trie_root = root return root @classmethod def preprocess_text(cls, texts: List[str]) -> List[str]: """使用Trie树进行方言转换""" if cls._trie_root is None: cls.build_dialect_trie() processed_texts = [] for text in texts: processed = [] i = 0 n = len(text) while i < n: node = cls._trie_root j = i found = False # 在Trie树中查找最长匹配 while j < n and text[j] in node.children: node = node.children[text[j]] j += 1 if node.is_end: # 找到完整匹配 processed.append(node.value) i = j found = True break if not found: # 无匹配 processed.append(text[i]) i += 1 processed_texts.append(''.join(processed)) return processed_texts # ====================== 系统配置管理器 ====================== class ConfigManager: _instance = None def __new__(cls): if cls._instance is None: cls._instance = super().__new__(cls) cls._instance._init_config() return cls._instance def _init_config(self): self.config = { "model_paths": { "asr": "./models/iic-speech_paraformer-large-vad-punc-spk_asr_nat-zh-cn", "sentiment": "./models/IDEA-CCNL-Erlangshen-Roberta-110M-Sentiment" }, "sample_rate": 16000, "silence_thresh": -40, "min_silence_len": 1000, "max_concurrent": 1, "max_audio_duration": 3600 # 移除了方言配置 } self.load_config() def load_config(self): try: if os.path.exists("config.json"): with open("config.json", "r") as f: self.config.update(json.load(f)) except: pass def save_config(self): try: with open("config.json", "w") as f: json.dump(self.config, f, indent=2) except: pass def get(self, key: str, default=None): return self.config.get(key, default) def set(self, key: str, value): self.config[key] = value self.save_config() # ====================== 音频处理工具 ====================== class AudioProcessor: SUPPORTED_FORMATS = ('.mp3', '.wav', '.amr', '.m4a') @staticmethod def convert_to_wav(input_path: str, temp_dir: str) -> Optional[List[str]]: try: os.makedirs(temp_dir, exist_ok=True) if not any(input_path.lower().endswith(ext) for ext in AudioProcessor.SUPPORTED_FORMATS): raise ValueError(f"不支持的音频格式: {os.path.splitext(input_path)[1]}") if input_path.lower().endswith('.wav'): return [input_path] audio = AudioSegment.from_file(input_path) max_duration = ConfigManager().get("max_audio_duration", 3600) * 1000 if len(audio) > max_duration: return AudioProcessor._split_long_audio(audio, input_path, temp_dir) return AudioProcessor._convert_single_audio(audio, input_path, temp_dir) except Exception as e: print(f"格式转换失败: {str(e)}") return None @staticmethod def _split_long_audio(audio: AudioSegment, input_path: str, temp_dir: str) -> List[str]: chunks = split_on_silence( audio, min_silence_len=ConfigManager().get("min_silence_len", 1000), silence_thresh=ConfigManager().get("silence_thresh", -40), keep_silence=500 ) merged_chunks = [] current_chunk = AudioSegment.empty() for chunk in chunks: if len(current_chunk) + len(chunk) < 5 * 60 * 1000: current_chunk += chunk else: if len(current_chunk) > 0: merged_chunks.append(current_chunk) current_chunk = chunk if len(current_chunk) > 0: merged_chunks.append(current_chunk) wav_paths = [] sample_rate = ConfigManager().get("sample_rate", 16000) for i, chunk in enumerate(merged_chunks): chunk = chunk.set_frame_rate(sample_rate).set_channels(1) chunk_path = os.path.join(temp_dir, f"{os.path.splitext(os.path.basename(input_path))[0]}_part{i + 1}.wav") chunk.export(chunk_path, format="wav") wav_paths.append(chunk_path) return wav_paths @staticmethod def _convert_single_audio(audio: AudioSegment, input_path: str, temp_dir: str) -> List[str]: sample_rate = ConfigManager().get("sample_rate", 16000) audio = audio.set_frame_rate(sample_rate).set_channels(1) wav_path = os.path.join(temp_dir, os.path.splitext(os.path.basename(input_path))[0] + ".wav") audio.export(wav_path, format="wav") return [wav_path] @staticmethod def extract_features_from_audio(y: np.ndarray, sr: int) -> Dict[str, float]: try: duration = librosa.get_duration(y=y, sr=sr) segment_length = 60 total_segments = max(1, int(np.ceil(duration / segment_length))) syllable_rates, volume_stabilities = [], [] total_samples = len(y) samples_per_segment = int(segment_length * sr) for i in range(total_segments): start = i * samples_per_segment end = min((i + 1) * samples_per_segment, total_samples) y_segment = y[start:end] if len(y_segment) == 0: continue intervals = librosa.effects.split(y_segment, top_db=20) speech_samples = sum(end - start for start, end in intervals) speech_duration = speech_samples / sr syllable_rates.append(len(intervals) / speech_duration if speech_duration > 0.1 else 0) rms = librosa.feature.rms(y=y_segment, frame_length=2048, hop_length=512)[0] if len(rms) > 0 and np.mean(rms) > 0: volume_stabilities.append(np.std(rms) / np.mean(rms)) return { "duration": duration, "syllable_rate": round(np.mean([r for r in syllable_rates if r > 0]) if syllable_rates else 0, 2), "volume_stability": round(np.mean(volume_stabilities) if volume_stabilities else 0, 4) } except Exception as e: print(f"特征提取错误: {str(e)}") return {"duration": 0, "syllable_rate": 0, "volume_stability": 0} # ====================== 模型加载器 ====================== class ModelLoader: asr_pipeline = None sentiment_model = None sentiment_tokenizer = None model_lock = RLock() models_loaded = False @classmethod def load_models(cls): config = ConfigManager() if not cls.asr_pipeline: with cls.model_lock: if not cls.asr_pipeline: cls._load_asr_model(config.get("model_paths")["asr"]) if not cls.sentiment_model: with cls.model_lock: if not cls.sentiment_model: cls._load_sentiment_model(config.get("model_paths")["sentiment"]) cls.models_loaded = True @classmethod def reload_models(cls): with cls.model_lock: cls.asr_pipeline = None cls.sentiment_model = None cls.sentiment_tokenizer = None gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() cls.load_models() @classmethod def _load_asr_model(cls, model_path: str): try: if not os.path.exists(model_path): raise FileNotFoundError(f"ASR模型路径不存在: {model_path}") asr_kwargs = {'quantize': 'int8'} if hasattr(torch, 'quantization') else {} cls.asr_pipeline = pipeline( task=Tasks.auto_speech_recognition, model=model_path, device='cuda' if torch.cuda.is_available() else 'cpu', **asr_kwargs ) except Exception as e: print(f"加载ASR模型失败: {str(e)}") raise @classmethod def _load_sentiment_model(cls, model_path: str): try: if not os.path.exists(model_path): raise FileNotFoundError(f"情感分析模型路径不存在: {model_path}") cls.sentiment_model = AutoModelForSequenceClassification.from_pretrained(model_path) cls.sentiment_tokenizer = AutoTokenizer.from_pretrained(model_path) if torch.cuda.is_available(): cls.sentiment_model = cls.sentiment_model.cuda() except Exception as e: print(f"加载情感分析模型失败: {str(e)}") raise # ====================== 核心分析线程(简化版) ====================== class AnalysisThread(QThread): progress_updated = pyqtSignal(int, str, str) result_ready = pyqtSignal(dict) finished_all = pyqtSignal() error_occurred = pyqtSignal(str, str) memory_warning = pyqtSignal() resource_cleanup = pyqtSignal() def __init__(self, audio_paths: List[str], temp_dir: str = "temp_wav"): super().__init__() self.audio_paths = audio_paths self.temp_dir = temp_dir self.is_running = True self.current_file = "" self.max_concurrent = min(ConfigManager().get("max_concurrent", 1), self._get_max_concurrent_tasks()) self.resource_monitor = ResourceMonitor() self.semaphore = Semaphore(self.max_concurrent) os.makedirs(temp_dir, exist_ok=True) def run(self): try: if not ModelLoader.models_loaded: self.error_occurred.emit("模型未加载", "请等待模型加载完成后再开始分析") return self.progress_updated.emit(0, f"最大并行任务数: {self.max_concurrent}", "") with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_concurrent) as executor: future_to_path = {} for path in self.audio_paths: if not self.is_running: break self.semaphore.acquire() future = executor.submit(self.analyze_audio, path, self._get_available_batch_size()) future_to_path[future] = path future.add_done_callback(lambda f: self.semaphore.release()) for i, future in enumerate(concurrent.futures.as_completed(future_to_path)): if not self.is_running: break path = future_to_path[future] self.current_file = os.path.basename(path) if self._check_memory_usage(): self.memory_warning.emit() self.is_running = False break try: result = future.result() if result: self.result_ready.emit(result) progress = int((i + 1) / len(self.audio_paths) * 100) self.progress_updated.emit(progress, f"完成: {self.current_file} ({i + 1}/{len(self.audio_paths)})", self.current_file) except Exception as e: result = {"file_name": self.current_file, "status": "error", "error": f"分析失败: {str(e)}"} self.result_ready.emit(result) if self.is_running: self.finished_all.emit() except Exception as e: self.error_occurred.emit("系统错误", str(e)) traceback.print_exc() finally: self.resource_cleanup.emit() self._cleanup_resources() def analyze_audio(self, audio_path: str, batch_size: int) -> Dict: result = {"file_name": os.path.basename(audio_path), "status": "processing"} wav_paths = [] try: wav_paths = AudioProcessor.convert_to_wav(audio_path, self.temp_dir) if not wav_paths: result["error"] = "格式转换失败" result["status"] = "error" return result audio_features = self._extract_audio_features(wav_paths) result.update(audio_features) result["duration_str"] = self._format_duration(audio_features["duration"]) all_segments, full_text = self._process_asr_segments(wav_paths) agent_segments, customer_segments = self._identify_speakers(all_segments) result["asr_text"] = self._generate_labeled_text(all_segments, agent_segments, customer_segments).strip() text_analysis = self._analyze_text(agent_segments, customer_segments, batch_size) result.update(text_analysis) service_check = self._check_service_rules(agent_segments) result.update(service_check) result["issue_resolved"] = self._check_issue_resolution(customer_segments, agent_segments) result["status"] = "success" except Exception as e: result["error"] = f"分析失败: {str(e)}" result["status"] = "error" finally: self._cleanup_temp_files(wav_paths) self._cleanup_resources() return result def _identify_speakers(self, segments: List[Dict]) -> Tuple[List[Dict], List[Dict]]: """使用四层逻辑识别客服""" if not segments: return [], [] # 逻辑1:前三片段开场白关键词 agent_id = self._identify_by_opening(segments) # 逻辑2:后三片段结束语关键词 if agent_id is None: agent_id = self._identify_by_closing(segments) # 逻辑3:称呼与敬语关键词 if agent_id is None: agent_id = self._identify_by_salutation(segments) # 逻辑4:安抚语关键词 if agent_id is None: agent_id = self._identify_by_reassurance(segments) # 后备策略:说话模式识别 if agent_id is None and len(segments) >= 4: agent_id = self._identify_by_speech_patterns(segments) if agent_id is None: # 最后手段:选择说话最多的说话人 spk_counts = {} for seg in segments: spk_id = seg["spk_id"] spk_counts[spk_id] = spk_counts.get(spk_id, 0) + 1 agent_id = max(spk_counts, key=spk_counts.get) if spk_counts else None if agent_id is None: return [], [] return ( [seg for seg in segments if seg["spk_id"] == agent_id], [seg for seg in segments if seg["spk_id"] != agent_id] ) def _identify_by_opening(self, segments: List[Dict]) -> Optional[str]: """逻辑1:前三片段开场白关键词""" keywords = DialectProcessor.KEYWORDS["opening"] for seg in segments[:3]: if any(kw in seg["text"] for kw in keywords): return seg["spk_id"] return None def _identify_by_closing(self, segments: List[Dict]) -> Optional[str]: """逻辑2:后三片段结束语关键词""" keywords = DialectProcessor.KEYWORDS["closing"] last_segments = segments[-3:] if len(segments) >= 3 else segments for seg in reversed(last_segments): if any(kw in seg["text"] for kw in keywords): return seg["spk_id"] return None def _identify_by_salutation(self, segments: List[Dict]) -> Optional[str]: """逻辑3:称呼与敬语关键词""" keywords = DialectProcessor.KEYWORDS["salutation"] for seg in segments: if any(kw in seg["text"] for kw in keywords): return seg["spk_id"] return None def _identify_by_reassurance(self, segments: List[Dict]) -> Optional[str]: """逻辑4:安抚语关键词""" keywords = DialectProcessor.KEYWORDS["reassurance"] for seg in segments: if any(kw in seg["text"] for kw in keywords): return seg["spk_id"] return None def _identify_by_speech_patterns(self, segments: List[Dict]) -> Optional[str]: """后备策略:说话模式识别""" speaker_features = {} for seg in segments: spk_id = seg["spk_id"] if spk_id not in speaker_features: speaker_features[spk_id] = {"total_duration": 0.0, "turn_count": 0, "question_count": 0} features = speaker_features[spk_id] features["total_duration"] += (seg["end"] - seg["start"]) features["turn_count"] += 1 if any(q_word in seg["text"] for q_word in ["吗", "呢", "?", "?", "如何", "怎样"]): features["question_count"] += 1 if speaker_features: max_duration = max(f["total_duration"] for f in speaker_features.values()) question_rates = {spk_id: f["question_count"] / f["turn_count"] for spk_id, f in speaker_features.items()} candidates = [] for spk_id, features in speaker_features.items(): score = (0.6 * (features["total_duration"] / max_duration) + 0.4 * question_rates[spk_id]) candidates.append((spk_id, score)) return max(candidates, key=lambda x: x[1])[0] return None def _analyze_text(self, agent_segments: List[Dict], customer_segments: List[Dict], batch_size: int) -> Dict: """优化情感分析方法""" def split_long_sentences(texts: List[str]) -> List[str]: splitted = [] for text in texts: if len(text) > 128: parts = re.split(r'(?<=[。!?;,])', text) current = "" for part in parts: if len(current) + len(part) < 128: current += part else: if current: splitted.append(current) current = part if current: splitted.append(current) else: splitted.append(text) return splitted def enhance_with_keywords(texts: List[str]) -> List[str]: enhanced = [] emotion_keywords = { "positive": ["满意", "高兴", "感谢", "专业", "解决", "帮助", "谢谢", "很好", "不错"], "negative": ["生气", "愤怒", "不满", "投诉", "问题", "失望", "差劲", "糟糕", "投诉"], "neutral": ["了解", "明白", "知道", "确认", "查询", "记录", "需要", "提供"] } for text in texts: found_emotion = None for emotion, keywords in emotion_keywords.items(): if any(kw in text for kw in keywords): found_emotion = emotion break if found_emotion: enhanced.append(f"[{found_emotion}] {text}") else: enhanced.append(text) return enhanced # 分析单个说话者 def analyze_speaker(segments: List[Dict], speaker_type: str) -> Dict: if not segments: return { f"{speaker_type}_negative": 0.0, f"{speaker_type}_neutral": 1.0, f"{speaker_type}_positive": 0.0, f"{speaker_type}_emotions": "无" } texts = [seg["text"] for seg in segments] processed_texts = DialectProcessor.preprocess_text(texts) splitted_texts = split_long_sentences(processed_texts) enhanced_texts = enhance_with_keywords(splitted_texts) with ModelLoader.model_lock: inputs = ModelLoader.sentiment_tokenizer( enhanced_texts, padding=True, truncation=True, max_length=128, return_tensors="pt" ) dataset = TensorDataset(inputs['input_ids'], inputs['attention_mask']) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False) device = "cuda" if torch.cuda.is_available() else "cpu" sentiment_dist = [] emotions = [] for batch in dataloader: input_ids, attention_mask = batch inputs = {'input_ids': input_ids.to(device), 'attention_mask': attention_mask.to(device)} with torch.no_grad(): outputs = ModelLoader.sentiment_model(**inputs) batch_probs = torch.nn.functional.softmax(outputs.logits, dim=-1) sentiment_dist.append(batch_probs.cpu()) emotion_keywords = ["愤怒", "生气", "鬼火", "不耐烦", "搞哪样嘛", "恼火", "背时", "失望", "不满"] for text in enhanced_texts: if any(kw in text for kw in emotion_keywords): if any(kw in text for kw in ["愤怒", "生气", "鬼火", "恼火"]): emotions.append("愤怒") elif any(kw in text for kw in ["不耐烦", "搞哪样嘛"]): emotions.append("不耐烦") elif "背时" in text: emotions.append("沮丧") elif any(kw in text for kw in ["失望", "不满"]): emotions.append("失望") if sentiment_dist: all_probs = torch.cat(sentiment_dist, dim=0) avg_sentiment = torch.mean(all_probs, dim=0).tolist() else: avg_sentiment = [0.0, 1.0, 0.0] return { f"{speaker_type}_negative": round(avg_sentiment[0], 4), f"{speaker_type}_neutral": round(avg_sentiment[1], 4), f"{speaker_type}_positive": round(avg_sentiment[2], 4), f"{speaker_type}_emotions": ",".join(set(emotions)) if emotions else "无" } return { **analyze_speaker(agent_segments, "agent"), **analyze_speaker(customer_segments, "customer") } def _check_service_rules(self, agent_segments: List[Dict]) -> Dict: keywords = DialectProcessor.KEYWORDS found_forbidden = [] found_opening = any(kw in seg["text"] for seg in agent_segments[:3] for kw in keywords["opening"]) found_closing = any( kw in seg["text"] for seg in (agent_segments[-3:] if len(agent_segments) >= 3 else agent_segments) for kw in keywords["closing"]) for seg in agent_segments: for kw in keywords["forbidden"]: if kw in seg["text"]: found_forbidden.append(kw) break return { "opening_found": found_opening, "closing_found": found_closing, "forbidden_words": ", ".join(set(found_forbidden)) if found_forbidden else "无" } def _check_issue_resolution(self, customer_segments: List[Dict], agent_segments: List[Dict]) -> bool: if not customer_segments or not agent_segments: return False resolution_keywords = ["解决", "处理", "完成", "已", "好了", "可以了", "没问题", "明白", "清楚", "满意", "行"] unresolved_keywords = ["没解决", "不行", "不对", "还是", "仍然", "再", "未", "无法", "不能", "不行", "不满意"] negation_words = ["不", "没", "未", "非", "无"] gratitude_keywords = ["谢谢", "感谢", "多谢", "麻烦", "辛苦", "有劳"] full_conversation = " ".join(seg["text"] for seg in customer_segments + agent_segments) last_customer_text = customer_segments[-1]["text"] for kw in unresolved_keywords: if kw in full_conversation: negation_context = re.search(rf".{{0,5}}{kw}", full_conversation) if negation_context: context = negation_context.group(0) if not any(neg in context for neg in negation_words): return False else: return False if any(kw in last_customer_text for kw in gratitude_keywords): if not any(neg + kw in last_customer_text for neg in negation_words): return True for agent_text in [seg["text"] for seg in agent_segments[-3:]]: if any(kw in agent_text for kw in resolution_keywords): if not any(neg in agent_text for neg in negation_words): return True for cust_seg in customer_segments[-2:]: if any(kw in cust_seg["text"] for kw in ["好", "行", "可以", "明白"]): if not any(neg in cust_seg["text"] for neg in negation_words): return True if any("?" in seg["text"] or "?" in seg["text"] for seg in customer_segments[-2:]): return False return False # ====================== 辅助方法 ====================== def _get_available_batch_size(self) -> int: if not torch.cuda.is_available(): return 4 total_mem = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3) per_task_mem = total_mem / self.max_concurrent return 2 if per_task_mem < 2 else 4 if per_task_mem < 4 else 8 def _get_max_concurrent_tasks(self) -> int: if torch.cuda.is_available(): total_mem = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3) return 1 if total_mem < 6 else 2 if total_mem < 12 else 3 return max(1, os.cpu_count() // 2) def _check_memory_usage(self) -> bool: try: mem_percent = self.resource_monitor.memory_percent() return mem_percent.get("cpu", 0) > 85 or mem_percent.get("gpu", 0) > 85 except: return False def _extract_audio_features(self, wav_paths: List[str]) -> Dict[str, float]: combined_y = np.array([], dtype=np.float32) sr = ConfigManager().get("sample_rate", 16000) for path in wav_paths: y, _ = librosa.load(path, sr=sr) combined_y = np.concatenate((combined_y, y)) return AudioProcessor.extract_features_from_audio(combined_y, sr) def _process_asr_segments(self, wav_paths: List[str]) -> Tuple[List[Dict], str]: segments = [] full_text = "" batch_size = min(4, len(wav_paths), self._get_available_batch_size()) for i in range(0, len(wav_paths), batch_size): if not self.is_running: break batch_paths = wav_paths[i:i + batch_size] try: results = ModelLoader.asr_pipeline(batch_paths, output_dir=None, batch_size=batch_size) for result in results: for seg in result[0]["sentences"]: segments.append({ "start": seg["start"], "end": seg["end"], "text": seg["text"], "spk_id": seg.get("spk_id", "0") }) full_text += seg["text"] + " " except Exception as e: print(f"ASR批处理错误: {str(e)}") for path in batch_paths: try: result = ModelLoader.asr_pipeline(path, output_dir=None) for seg in result[0]["sentences"]: segments.append({ "start": seg["start"], "end": seg["end"], "text": seg["text"], "spk_id": seg.get("spk_id", "0") }) full_text += seg["text"] + " " except: continue return segments, full_text.strip() def _generate_labeled_text(self, all_segments: List[Dict], agent_segments: List[Dict], customer_segments: List[Dict]) -> str: agent_spk_id = agent_segments[0]["spk_id"] if agent_segments else None customer_spk_id = customer_segments[0]["spk_id"] if customer_segments else None labeled_text = [] for seg in all_segments: if seg["spk_id"] == agent_spk_id: speaker = "客服" elif seg["spk_id"] == customer_spk_id: speaker = "客户" else: speaker = f"说话人{seg['spk_id']}" labeled_text.append(f"[{speaker}]: {seg['text']}") return "\n".join(labeled_text) def _cleanup_temp_files(self, paths: List[str]): def safe_remove(path): if os.path.exists(path): try: os.remove(path) except: pass for path in paths: safe_remove(path) now = time.time() for file in os.listdir(self.temp_dir): file_path = os.path.join(self.temp_dir, file) if os.path.isfile(file_path) and (now - os.path.getmtime(file_path)) > 3600: safe_remove(file_path) def _format_duration(self, seconds: float) -> str: minutes, seconds = divmod(int(seconds), 60) hours, minutes = divmod(minutes, 60) return f"{hours:02d}:{minutes:02d}:{seconds:02d}" def _cleanup_resources(self): gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() def stop(self): self.is_running = False # ====================== 模型加载线程 ====================== class ModelLoadThread(QThread): progress_updated = pyqtSignal(int, str) finished = pyqtSignal(bool, str) def run(self): try: config = ConfigManager().get("model_paths") if not os.path.exists(config["asr"]): self.finished.emit(False, "ASR模型路径不存在") return if not os.path.exists(config["sentiment"]): self.finished.emit(False, "情感分析模型路径不存在") return self.progress_updated.emit(20, "加载语音识别模型...") ModelLoader._load_asr_model(config["asr"]) self.progress_updated.emit(60, "加载情感分析模型...") ModelLoader._load_sentiment_model(config["sentiment"]) self.progress_updated.emit(100, "模型加载完成") self.finished.emit(True, "模型加载成功") except Exception as e: self.finished.emit(False, f"模型加载失败: {str(e)}") # ====================== GUI主界面(简化版) ====================== class MainWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("贵州方言客服质检系统") self.setGeometry(100, 100, 1200, 800) self.setup_ui() self.setup_menu() self.analysis_thread = None self.model_load_thread = None self.temp_dir = "temp_wav" os.makedirs(self.temp_dir, exist_ok=True) self.model_loaded = False def setup_ui(self): main_widget = QWidget() main_layout = QVBoxLayout() main_widget.setLayout(main_layout) self.setCentralWidget(main_widget) toolbar = QToolBar("主工具栏") self.addToolBar(toolbar) actions = [ ("添加文件", "icons/add.png", self.add_files), ("开始分析", "icons/start.png", self.start_analysis), ("停止分析", "icons/stop.png", self.stop_analysis), ("设置", "icons/settings.png", self.open_settings) ] for name, icon, func in actions: action = QAction(QIcon(icon), name, self) action.triggered.connect(func) toolbar.addAction(action) splitter = QSplitter(Qt.Horizontal) main_layout.addWidget(splitter) left_widget = QWidget() left_layout = QVBoxLayout() left_widget.setLayout(left_layout) left_layout.addWidget(QLabel("待分析文件列表")) self.file_list = QListWidget() self.file_list.setSelectionMode(QListWidget.ExtendedSelection) left_layout.addWidget(self.file_list) right_widget = QWidget() right_layout = QVBoxLayout() right_widget.setLayout(right_layout) right_layout.addWidget(QLabel("分析进度")) self.progress_bar = QProgressBar() self.progress_bar.setRange(0, 100) right_layout.addWidget(self.progress_bar) self.current_file_label = QLabel("当前文件: 无") right_layout.addWidget(self.current_file_label) self.tab_widget = QTabWidget() right_layout.addWidget(self.tab_widget, 1) text_tab = QWidget() text_layout = QVBoxLayout() text_tab.setLayout(text_layout) self.text_result = QTextEdit() self.text_result.setReadOnly(True) text_layout.addWidget(self.text_result) self.tab_widget.addTab(text_tab, "文本结果") detail_tab = QWidget() detail_layout = QVBoxLayout() detail_tab.setLayout(detail_layout) self.result_table = QTableWidget() self.result_table.setColumnCount(10) self.result_table.setHorizontalHeaderLabels([ "文件名", "时长", "语速", "音量稳定性", "客服情感", "客户情感", "开场白", "结束语", "禁用词", "问题解决" ]) self.result_table.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) detail_layout.addWidget(self.result_table) self.tab_widget.addTab(detail_tab, "详细结果") splitter.addWidget(left_widget) splitter.addWidget(right_widget) splitter.setSizes([300, 900]) def setup_menu(self): menu_bar = self.menuBar() file_menu = menu_bar.addMenu("文件") file_actions = [ ("添加文件", self.add_files), ("导出结果", self.export_results), ("退出", self.close) ] for name, func in file_actions: action = QAction(name, self) action.triggered.connect(func) file_menu.addAction(action) analysis_menu = menu_bar.addMenu("分析") analysis_actions = [ ("开始分析", self.start_analysis), ("停止分析", self.stop_analysis) ] for name, func in analysis_actions: action = QAction(name, self) action.triggered.connect(func) analysis_menu.addAction(action) settings_menu = menu_bar.addMenu("设置") settings_actions = [ ("系统配置", self.open_settings), ("加载模型", self.load_models) ] for name, func in settings_actions: action = QAction(name, self) action.triggered.connect(func) settings_menu.addAction(action) def add_files(self): files, _ = QFileDialog.getOpenFileNames( self, "选择音频文件", "", "音频文件 (*.mp3 *.wav *.amr *.m4a)" ) for file in files: self.file_list.addItem(file) def start_analysis(self): if self.file_list.count() == 0: QMessageBox.warning(self, "警告", "请先添加要分析的音频文件") return if not self.model_loaded: QMessageBox.warning(self, "警告", "模型未加载,请先加载模型") return audio_paths = [self.file_list.item(i).text() for i in range(self.file_list.count())] self.text_result.clear() self.result_table.setRowCount(0) self.analysis_thread = AnalysisThread(audio_paths, self.temp_dir) self.analysis_thread.progress_updated.connect(self.update_progress) self.analysis_thread.result_ready.connect(self.handle_result) self.analysis_thread.finished_all.connect(self.analysis_finished) self.analysis_thread.error_occurred.connect(self.show_error) self.analysis_thread.memory_warning.connect(self.handle_memory_warning) self.analysis_thread.start() def stop_analysis(self): if self.analysis_thread and self.analysis_thread.isRunning(): self.analysis_thread.stop() self.analysis_thread.wait() QMessageBox.information(self, "信息", "分析已停止") def load_models(self): if self.model_load_thread and self.model_load_thread.isRunning(): return self.model_load_thread = ModelLoadThread() self.model_load_thread.progress_updated.connect(lambda value, _: self.progress_bar.setValue(value)) self.model_load_thread.finished.connect(self.handle_model_load_result) self.model_load_thread.start() def update_progress(self, progress: int, message: str, current_file: str): self.progress_bar.setValue(progress) self.current_file_label.setText(f"当前文件: {current_file}") def handle_result(self, result: Dict): if result["status"] == "success": self.text_result.append( f"文件: {result['file_name']}\n状态: {result['status']}\n时长: {result['duration_str']}") self.text_result.append( f"语速: {result['syllable_rate']} 音节/秒\n音量稳定性: {result['volume_stability']}") self.text_result.append( f"客服情感: 负面({result['agent_negative']:.2%}) 中性({result['agent_neutral']:.2%}) 正面({result['agent_positive']:.2%})") self.text_result.append(f"客服情绪: {result['agent_emotions']}") self.text_result.append( f"客户情感: 负面({result['customer_negative']:.2%}) 中性({result['customer_neutral']:.2%}) 正面({result['customer_positive']:.2%})") self.text_result.append(f"客户情绪: {result['customer_emotions']}") self.text_result.append( f"开场白: {'有' if result['opening_found'] else '无'}\n结束语: {'有' if result['closing_found'] else '无'}") self.text_result.append( f"禁用词: {result['forbidden_words']}\n问题解决: {'是' if result['issue_resolved'] else '否'}") self.text_result.append("\n=== 对话文本 ===\n" + result["asr_text"] + "\n" + "=" * 50 + "\n") row = self.result_table.rowCount() self.result_table.insertRow(row) items = [ result["file_name"], result["duration_str"], str(result["syllable_rate"]), str(result["volume_stability"]), f"负:{result['agent_negative']:.2f} 中:{result['agent_neutral']:.2f} 正:{result['agent_positive']:.2f}", f"负:{result['customer_negative']:.2f} 中:{result['customer_neutral']:.2f} 正:{result['customer_positive']:.2f}", "是" if result["opening_found"] else "否", "是" if result["closing_found"] else "否", result["forbidden_words"], "是" if result["issue_resolved"] else "否" ] for col, text in enumerate(items): item = QTableWidgetItem(text) if col in [6, 7] and text == "否": item.setBackground(QColor(255, 200, 200)) if col == 8 and text != "无": item.setBackground(QColor(255, 200, 200)) if col == 9 and text == "否": item.setBackground(QColor(255, 200, 200)) self.result_table.setItem(row, col, item) def analysis_finished(self): QMessageBox.information(self, "完成", "所有音频分析完成") self.progress_bar.setValue(100) def show_error(self, title: str, message: str): QMessageBox.critical(self, title, message) def handle_memory_warning(self): QMessageBox.warning(self, "内存警告", "内存使用过高,分析已停止") def handle_model_load_result(self, success: bool, message: str): if success: self.model_loaded = True QMessageBox.information(self, "成功", message) else: QMessageBox.critical(self, "错误", message) def open_settings(self): settings_dialog = QDialog(self) settings_dialog.setWindowTitle("系统设置") settings_dialog.setFixedSize(500, 300) # 高度减少 layout = QVBoxLayout() config = ConfigManager().get("model_paths") settings = [ ("ASR模型路径:", config["asr"], self.browse_directory), ("情感模型路径:", config["sentiment"], self.browse_directory) ] for label, value, func in settings: h_layout = QHBoxLayout() h_layout.addWidget(QLabel(label)) line_edit = QLineEdit(value) browse_btn = QPushButton("浏览...") browse_btn.clicked.connect(lambda _, le=line_edit: func(le)) h_layout.addWidget(line_edit) h_layout.addWidget(browse_btn) layout.addLayout(h_layout) spin_settings = [ ("最大并发任务:", "max_concurrent", 1, 8), ("最大音频时长(秒):", "max_audio_duration", 60, 86400) ] for label, key, min_val, max_val in spin_settings: h_layout = QHBoxLayout() h_layout.addWidget(QLabel(label)) spin_box = QSpinBox() spin_box.setRange(min_val, max_val) spin_box.setValue(ConfigManager().get(key, min_val)) h_layout.addWidget(spin_box) layout.addLayout(h_layout) button_box = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) button_box.accepted.connect(settings_dialog.accept) button_box.rejected.connect(settings_dialog.reject) layout.addWidget(button_box) settings_dialog.setLayout(layout) if settings_dialog.exec_() == QDialog.Accepted: ConfigManager().set("model_paths", { "asr": layout.itemAt(0).layout().itemAt(1).widget().text(), "sentiment": layout.itemAt(1).layout().itemAt(1).widget().text() }) ConfigManager().set("max_concurrent", layout.itemAt(2).layout().itemAt(1).widget().value()) ConfigManager().set("max_audio_duration", layout.itemAt(3).layout().itemAt(1).widget().value()) ModelLoader.reload_models() def browse_directory(self, line_edit): path = QFileDialog.getExistingDirectory(self, "选择目录") if path: line_edit.setText(path) def export_results(self): if self.result_table.rowCount() == 0: QMessageBox.warning(self, "警告", "没有可导出的结果") return path, _ = QFileDialog.getSaveFileName(self, "保存结果", "", "CSV文件 (*.csv)") if not path: return try: with open(path, "w", encoding="utf-8") as f: headers = [self.result_table.horizontalHeaderItem(col).text() for col in range(self.result_table.columnCount())] f.write(",".join(headers) + "\n") for row in range(self.result_table.rowCount()): row_data = [self.result_table.item(row, col).text() for col in range(self.result_table.columnCount())] f.write(",".join(row_data) + "\n") QMessageBox.information(self, "成功", f"结果已导出到: {path}") except Exception as e: QMessageBox.critical(self, "错误", f"导出失败: {str(e)}") def closeEvent(self, event): if self.analysis_thread and self.analysis_thread.isRunning(): self.analysis_thread.stop() self.analysis_thread.wait() try: for file in os.listdir(self.temp_dir): file_path = os.path.join(self.temp_dir, file) if os.path.isfile(file_path): for _ in range(3): try: os.remove(file_path); break except: time.sleep(0.1) os.rmdir(self.temp_dir) except: pass event.accept() # ====================== 程序入口 ====================== if __name__ == "__main__": torch.set_num_threads(4) app = QApplication(sys.argv) app.setStyle('Fusion') window = MainWindow() window.show() sys.exit(app.exec_())
08-05
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值