编辑距离
- 问题描述:leetcode:72
- Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
- 给定两个字符串word1和word2;求把word1转化为word2需要的最少的步骤。对于字符串可以有以下操作:
a) 插入一个字符
b) 删除一个字符
c) 替换一个字符
思路:
- 先考虑边界情况,当word1有输入,word2为空时;所需要的步骤为word1的长度。
先考虑边界情况,当word1为空,word2有输入时;所需要的步骤为word2的长度。
当word1和word2都有输入时,对于dp[i][j]为何值取决于word1[i-1]与word2[j-1]是否相等,当不相等时:
dp[i][j] = dp[i-1][j] , dp[i][j-1], dp[i-1][j-1]中的最小值加1;
如下图所示:
由于a 与 d 不相等,所以dp[1][4]的值取决于图中所示三个值,取三个值中的最小值然后加1.
- 当word1[i-1]与word2[j-1]相等时:
dp[i][j]=dp[i-1][j-1]
如图所示:
我自己的渣代码,虽然AC但是可以看到一堆补丁:
int minDistance(string word1, string word2) {
int row = word1.length();
int col = word2.length(); //如何使得可以根据row和col求得数组的大小
if(row==0&&col==0) return 0;
else if(row==0) return col;
else if(col==0) return row;
int a = 0;
int b = 0;
int ans[row][col];
string::iterator rowbegin=word1.begin();
string::iterator colbegin=word2.begin();
for (string::iterator i=word2.begin(); i!=word2.end(); i++){
if (*i == *rowbegin) {
ans[a][b] = b;
}
else if(b==0){
ans[a][b] = 1;
}
else{
ans[a][b] = ans[a][b-1]+1;
}
b++;
}
a = 1;
b = 0;
for (string::iterator j=word1.begin()+1; j!=word1.end(); j++){
if (*j == *colbegin) {
ans[a][b] = a;
}
else{
ans[a][b] = ans[a-1][b]+1;
}
a++;
}
a = 1;
b = 1;
for (string::iterator i=rowbegin+1;i!=word1.end(); i++){
b = 1;
for (string::iterator j=colbegin+1;j!=word2.end(); j++){
if (*i==*j) {
ans[a][b] = ans[a-1][b-1];
}
else{
ans[a][b] = min(min(ans[a-1][b],ans[a][b-1]),ans[a-1][b-1])+1;
}
b++;
}
a++;
}
return ans[row-1][col-1];
}
leetcode优秀代码:
int minDistance(string word1, string word2) {
int m = word1.length(), n = word2.length();
vector<vector<int> > dp(m + 1, vector<int> (n + 1, 0));
for (int i = 1; i <= m; i++)
dp[i][0] = i;
for (int j = 1; j <= n; j++)
dp[0][j] = j;
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (word1[i - 1] == word2[j - 1])
dp[i][j] = dp[i - 1][j - 1];
else dp[i][j] = min(dp[i - 1][j - 1] + 1, min(dp[i][j - 1] + 1, dp[i - 1][j] + 1));
}
}
return dp[m][n];
}
语法注意点:
string是可以使用str[i]来获取第i+1个字符的,不一定非得使用iterator:
if (word1[i - 1] == word2[j - 1]);
定义了一个二维数组,行列数都已知:
注意:最后两个 > >中间有个空格。
vector<vector<int> > dp(m + 1, vector<int> (n + 1, 0));
以上之所以要m+1和n+1是因为考虑到边界,当一个word没有输入时的情况;所以数组的大小要大一点。