hdu4465 Candy(快速排列组合+概率)

探讨了一个懒孩子随机从两个初始糖果数量相同的盒子中取糖的概率问题,并通过计算期望值来预测剩余糖果的数量。

链接:http://acm.hdu.edu.cn/showproblem.php?pid=4465

Candy

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2524    Accepted Submission(s): 1103
Special Judge


Problem Description
LazyChild is a lazy child who likes candy very much. Despite being very young, he has two large candy boxes, each contains n candies initially. Everyday he chooses one box and open it. He chooses the first box with probability p and the second box with probability (1 - p). For the chosen box, if there are still candies in it, he eats one of them; otherwise, he will be sad and then open the other box.
He has been eating one candy a day for several days. But one day, when opening a box, he finds no candy left. Before opening the other box, he wants to know the expected number of candies left in the other box. Can you help him?
 

Input
There are several test cases.
For each test case, there is a single line containing an integer n (1 ≤ n ≤ 2 × 105) and a real number p (0 ≤ p ≤ 1, with 6 digits after the decimal).
Input is terminated by EOF.
 

Output
For each test case, output one line “Case X: Y” where X is the test case number (starting from 1) and Y is a real number indicating the desired answer.
Any answer with an absolute error less than or equal to 10-4 would be accepted.
 

Sample Input
  
10 0.400000 100 0.500000 124 0.432650 325 0.325100 532 0.487520 2276 0.720000
 

Sample Output
  
Case 1: 3.528175 Case 2: 10.326044 Case 3: 28.861945 Case 4: 167.965476 Case 5: 32.601816 Case 6: 1390.500000
 

Source
2012 Asia Chengdu Regional Contest


题意:有两个盒子各有n个糖,每天随机选一个(概率分别为p,1-p),然后吃一颗糖。直到有一天,打开一个盒子看没糖l!输入n,p,求此时另一个盒子里糖的个数数学期望。

分析:根据期望的定义,不妨设最后打开第一个盒子,此时第二个盒子有i颗,则这之前打开过n+(n-i)次盒子,其中有n次取的是盒子1,其余n-i次取的盒子2,概率为C(2n-i,n)P^(n+1)*(1-P)^(n-i)。注意P的指数是n+1,因为除了前面打开过n次盒子1之外,最后又打开了一次。
          当然光计算出这个概率,这题还是很难实现的,我们需要优化一下。我们可以利用对数,设v1(i)=ln(C(2n-i,n))+(n+1)ln(P)+(n-i)ln(1-P),则“最后打开第一个盒子”对应的数学期望为 i*e^v1(i)。
         同理,当最后打开的是第二个盒子,对数为 v2(i)=ln(C(2n-i,n))+(n+1)ln(1-p)+(n-i)ln(p),对应的数学期望为 i*e^v2(i)。
        根据数学期望的定义,最终答案为 sum{i*(e^v1(i)+e^v2(i))。                                    (参考算法竞赛入门经典333页)


 
 #include<iostream>
 #include<cstdio>
 #include<cmath>
 #include<cstring>
 using namespace std;
 const int maxn=400040;
 double nlog[maxn],p,q; //nlog[n]记录log[1]+log[2]+...+log[n]
 int n;
 double cal(int n,int m)
 {
     return nlog[n]-nlog[m]-nlog[n-m];
 }
 int main()
 {
     int cas=0;
     memset(nlog,0,sizeof(nlog));
     for(int i=1;i<maxn;i++) // 对nlog[n]做预处理
        nlog[i] +=nlog[i-1] + log(i);
     while(scanf("%d %lf",&n,&p) != EOF)
     {
         q=log(1-p); // 直接对(1-p)取对数,后面运用到
         p=log(p);
         double ans=0;
         for(int i=0;i<=n;i++)
         {
             ans+=i*(exp(cal(2*n-i,n)+(n+1)*p+(n-i)*q) + exp(cal(2*n-i,n)+(n+1)*q+(n-i)*p));
         }
         printf("Case %d: %lf\n",++cas,ans);
     }
     return 0;
 }

本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值