PIGS
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 12372 | Accepted: 5476 |
Description
Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs. All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house. Write a program that will find the maximum number of pigs that he can sell on that day.
An unlimited number of pigs can be placed in every pig-house. Write a program that will find the maximum number of pigs that he can sell on that day.
Input
The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
Output
The first and only line of the output should contain the number of sold pigs.
Sample Input
3 3 3 1 10 2 1 2 2 2 1 3 3 1 2 6
Sample Output
7
POJ:http://poj.org/problem?id=1149
题意:M个猪圈,N个顾客,每个顾客有一些的猪圈的钥匙,只能购买这些有钥匙的猪圈里的猪,而且要买一定数量的猪,每个猪圈有已知数量的猪,
但是猪圈可以重新打开,将猪的个数,重新分配,以达到卖出的猪的数量最多。
思路:刚学网络流,表示很菜很菜很菜~~
①构造网络,将顾客看成源点和汇点以外的结点,并设另外两个节点:源点和汇点。
②源点和每个猪圈的第一个顾客连边,边的权是开始时候猪圈中猪的数量。
③ 若源点和某个节点之间有重边,则将权合并
④顾客j紧跟顾客i之后打开某个猪圈,则<i.j>的权是正无穷。
⑤每个顾客和会点之间连边,边的权值是顾客所希望购买的猪的数量。
例如:样例中的就可以建立如图:
其中inf是正无穷~~
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 300000000
#define M 1002
#define N 102
int s,t;
int cus[N][N];
int flow[N][N];
int i,j;
void ford()
{
int prev[N];
int minflow[N];
int queue[N];
int qs,qe,v,p;
for(i=0;i<N;i++)
for(j=0;j<N;j++)
flow[i][j]=0;
minflow[0]=INF;
while(1)
{
for(i=0;i<N;i++)
prev[i]=-2;
prev[0]=-1;
qs=0;
queue[qs]=0;
qe=1;
while(qs<qe&&prev[t]==-2)
{
v=queue[qs++];
for(i=0;i<t+1;i++)
{
if(prev[i]==-2&&(p=cus[v][i]-flow[v][i]))
{
prev[i]=v; queue[qe++]=i;
minflow[i]=(minflow[v]<p)?minflow[v]:p;
}
}
}
if(prev[t]==-2) break;
for(i=prev[t],j=t;i!=-1;j=i,i=prev[i])
{
flow[i][j]=flow[i][j]+minflow[t];
flow[j][i]=-flow[i][j];
}
}
for(i=0,p=0;i<t;i++)
p=p+flow[i][t];
printf("%d\n",p);
}
int main()
{
int m,n;
int num,k;
int house[M],last[M];
while(scanf("%d %d",&m,&n)!=EOF)
{
memset(last,0,sizeof(last));
memset(cus,0,sizeof(cus));
s=0;t=n+1;
for(i=1;i<=m;i++)
scanf("%d",&house[i]);
for(i=1;i<=n;i++)
{
scanf("%d",&num);
for(j=0;j<num;j++)
{
scanf("%d",&k);
if(last[k]==0)
cus[s][i]=cus[s][i]+house[k];
else
cus[last[k]][i]=INF;
last[k]=i;
}
scanf("%d",&cus[i][t]);
}
ford();
}
}
poj1273 一般增光路算法(残余网络),find_augment_path求增光路,并通过augment_flow计算可改进量,然后调用update_flow更新网络流,直到不存在增光路为止。
#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
#define M 210
struct Matix{
int c,f;
}edge[M][M];
int n,m;
int s,t;
int resi[M][M];
int qu[M*M],qs,qe;
int pre[M];
int vis[M];
int maxflow,min_augment;
void find_augment_path(){
int i,v;
memset(vis,0,sizeof(vis));
qs=0;qu[qs]=s;
pre[s]=s;vis[s]=1;qe=1;
memset(resi,0,sizeof(resi));
memset(pre,0,sizeof(pre));
while(qs<qe&&pre[t]==0){
v=qu[qs++];
for(i=1;i<=n;i++){
if(vis[i]==0){
if(edge[v][i].c-edge[v][i].f>0){
resi[v][i]=edge[v][i].c-edge[v][i].f;
pre[i]=v;qu[qe++]=i;vis[i]=1;
}else if(edge[i][v].f>0){
resi[v][i]=edge[i][v].f;
pre[i]=v;qu[qe++]=i;vis[i]=1;
}
}
}
}
}
void augment_flow(){
int i=t,j;
if(pre[i]==0) {min_augment=0;return;}
j=0x7fffffff;
while(i!=s){
if(resi[pre[i]][i]<j) j=resi[pre[i]][i];
i=pre[i];
}
min_augment=j;
}
void update_flow(){
int i=t;
if(pre[i]==0) return ;
while(i!=s){
if(edge[pre[i]][i].c-edge[pre[i]][i].f>0)
edge[pre[i]][i].f+=min_augment;
else if(edge[i][pre[i]].f>0) edge[pre[i]][i].f+=min_augment;
i=pre[i];
}
}
void solve(){
s=1;t=n;
maxflow=0;
while(1){
find_augment_path();
augment_flow();
maxflow+=min_augment;
if(min_augment>0) update_flow();
else return ;
}
}
int main(){
int i;
int u,v,w;
while(scanf("%d%d",&m,&n)!=EOF){
memset(edge,0,sizeof(edge));
for(i=0;i<m;i++){
scanf("%d%d%d",&u,&v,&w);
edge[u][v].c+=w;
}
solve();
printf("%d\n",maxflow);
}
return 0;
}