矩阵分解

矩阵分解是将矩阵拆解为数个矩阵的乘积,常见方法有三角分解法、QR分解法和奇异值分解法。三角分解法又称LU分解法,用于简化行列式计算等;QR分解法将矩阵分解为正规正交与上三角矩阵;奇异值分解法是可靠但耗时的正交矩阵分解法,可用于解最小平方误差法等。MATLAB有对应函数执行这些分解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积,可分为三角分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等,常见的有三种:1)三角分解法 (Triangular Factorization),2)QR 分解法 (QR Factorization),3)奇异值分解法 (Singular Value Decomposition)。

中文名

矩阵分解

外文名

decomposition

性    质

将矩阵拆解为数个矩阵的乘积

方    法

三角分解法

目录

  1. 三角分解法
  2. QR分解法
  3. 奇异值分解法

三角分解法

 

三角分解法是将原正方 (square) 矩阵分解成一个上三角形矩阵或是排列(permuted) 的上三角形矩阵和一个 下三角形矩阵,这样的分解法又称为LU分解法。它的用途主要在简化一个大矩阵的行列式值的计算过程,求逆矩阵,和求解联立方程组。不过要注意这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同 的一对上下三角形矩阵,此两三角形矩阵相乘也会得到原矩阵。

MATLAB以lu函数来执行lu分解法, 其语法为[L,U]=lu(A)。

QR分解法

 

QR分解法是将矩阵分解成一个正规正交矩阵与上三角形矩阵,所以称为QR分解法,与此正规正交矩阵的通用符号Q有关。

MATLAB以qr函数来执行QR分解法, 其语法为[Q,R]=qr(A)。

奇异值分解法

 

奇异值分解 (singular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法,但是它比QR 分解法要花上近十倍的计算时间。[U,S,V]=svd(A),其中U和V分别代表两个正交矩阵,而S代表一对角矩阵。 和QR分解法相同, 原矩阵A不必为正方矩阵。使用SVD分解法的用途是解最小平方误差法和数据压缩。

MATLAB以svd函数来执行svd分解法, 其语法为[S,V,D]=svd(A)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值