正则项

本文详细介绍了正则项在深度学习模型中的作用,包括L1、L2及混合正则项如何通过惩罚权重或激活值来防止过拟合,使模型更加稳定和泛化能力更强。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正则项在优化过程中层的参数或层的激活值添加惩罚项,这些惩罚项将与损失函数一起作为网络的最终优化目标

惩罚项基于层进行惩罚,目前惩罚项的接口与层有关,但Dense, TimeDistributedDense, MaxoutDense, Covolution1D, Covolution2D, Convolution3D具有共同的接口。

这些层有三个关键字参数以施加正则项:

  • W_regularizer:施加在权重上的正则项,为WeightRegularizer对象

  • b_regularizer:施加在偏置向量上的正则项,为WeightRegularizer对象

  • activity_regularizer:施加在输出上的正则项,为ActivityRegularizer对象

例子

from keras.regularizers import l2, activity_l2
model.add(Dense(64, input_dim=64, W_regularizer=l2(0.01), activity_regularizer=activity_l2(0.01)))

预定义正则项

keras.regularizers.WeightRegularizer(l1=0., l2=0.)
keras.regularizers.ActivityRegularizer(l1=0., l2=0.)

缩写

keras.regularizers支持以下缩写

  • l1(l=0.01):L1正则项,又称LASSO

  • l2(l=0.01):L2正则项,又称权重衰减或Ridge

  • l1l2(l1=0.01, l2=0.01): L1-L2混合正则项, 又称ElasticNet

  • activity_l1(l=0.01): L1激活值正则项

  • activity_l2(l=0.01): L2激活值正则项

  • activity_l1l2(l1=0.01, l2=0.01): L1+L2激活值正则项

【Tips】正则项通常用于对模型的训练施加某种约束,L1正则项即L1范数约束,该约束会使被约束矩阵/向量更稀疏。L2正则项即L2范数约束,该约束会使被约束的矩阵/向量更平滑,因为它对脉冲型的值有很大的惩罚。【@Bigmoyan】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值