105 - Construct Binary Tree from Preorder and Inorder Traversal

本文介绍了一种根据二叉树的前序和中序遍历序列重建该二叉树的方法。通过递归方式划分左子树和右子树,并给出具体的实现代码。

Given preorder and inorder traversal of a tree, construct the binary tree.

Note:
You may assume that duplicates do not exist in the tree.

Subscribe to see which companies asked this question

思路分析:

题意:也就是根据树的前序中序遍历来重构二叉树。

There is an example.
        _______7______
       /              \
    __10__          ___2
   /      \        /
   4       3      _8
            \    /
             1  11
The preorder and inorder traversals for the binary tree above is:
preorder = {7,10,4,3,1,2,8,11}
inorder = {4,10,3,1,7,11,8,2}

The first node in preorder alwasy the root of the tree. We can break the tree like:
1st round:
preorder:  {7}, {10,4,3,1}, {2,8,11}
inorder:     {4,10,3,1}, {7}, {11, 8,2}

        _______7______
       /              \
    {4,10,3,1}       {11,8,2}
Since we alreay find that {7} will be the root, and in "inorder" sert, all the data in the left of {7} will construct the left sub-tree. And the right part will construct a right sub-tree. We can the left and right part agin based on the preorder.
2nd round
left part                                                                            right part
preorder: {10}, {4}, {3,1}                                              {2}, {8,11}
inorder:  {4}, {10}, {3,1}                                                {11,8}, {2}


        _______7______
       /              \
    __10__          ___2
   /      \        /
   4      {3,1}   {11,8}
see that, {10} will be the root of left-sub-tree and {2} will be the root of right-sub-tree.

Same way to split {3,1} and {11,8}, yo will get the complete tree now.

        _______7______
       /              \
    __10__          ___2
   /      \        /
   4       3      _8
            \    /
             1  11
So, simulate this process from bottom to top with recursion as following code.
代码如下:

#include "stdafx.h"
#include <iostream>
#include <vector>
#include <queue>

using namespace std;

struct TreeNode
{
	int val;
	TreeNode *left;
	TreeNode *right;
	TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

class Solution_105_ConstructBinaryTreefromPreorderandInorderTraversal
{
public:
	TreeNode *BuildTreePI(vector<int> &preorder, vector<int> &inorder, int p_s, int p_e, int i_s, int i_e)
	{
		


		int pivot = preorder[p_s];
		int i = i_s;

		for (; i < i_e; i++)
		{
			if (inorder[i] == pivot)
			{
				break;
			}
		}

		int length1 = i - i_s - 1; //中序遍历中的root在向量中的下标
		int length2 = i_e - i - 1; //中序遍历中从后向前的元素个数
		TreeNode *node = new TreeNode(pivot);

		node->left = BuildTreePI(preorder, inorder, p_s + 1, length1 + p_s + 1, i_s, i - 1);
		node->right = BuildTreePI(preorder, inorder, p_e - length2, p_e, i + 1, i_e);
	}
	TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) 
	{
		return BuildTreePI(preorder, inorder, 0, preorder.size() - 1, 0, inorder.size() - 1);
	}
};



下面是该段代码的 **Visual Studio 可运行完整版本**,包含: - `TreeNode` 节点定义 - `buildTree` 函数的完整实现(从前序和中序遍历构造二叉树) - 主函数中测试用例 - 打印构建后的二叉树(前序遍历验证) --- ## ✅ Visual Studio 完整运行代码 ```cpp #include <iostream> #include <vector> #include <algorithm> #include <ranges> using namespace std; // 二叉树节点定义 struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {} }; class Solution { public: TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { if (preorder.empty()) { return nullptr; } // 查找根节点在中序遍历中的位置 auto root_it = ranges::find(inorder, preorder[0]); int left_size = distance(inorder.begin(), root_it); // 左子树节点数量 // 划分左子树和右子树的前序和中序序列 vector<int> pre_left(preorder.begin() + 1, preorder.begin() + 1 + left_size); vector<int> pre_right(preorder.begin() + 1 + left_size, preorder.end()); vector<int> in_left(inorder.begin(), inorder.begin() + left_size); vector<int> in_right(inorder.begin() + 1 + left_size, inorder.end()); // 递归构建左右子树 TreeNode* left = buildTree(pre_left, in_left); TreeNode* right = buildTree(pre_right, in_right); return new TreeNode(preorder[0], left, right); } // 前序遍历打印二叉树 void preorderPrint(TreeNode* root) { if (root == nullptr) { cout << "null "; return; } cout << root->val << " "; preorderPrint(root->left); preorderPrint(root->right); } // 析构函数(手动释放内存) void deleteTree(TreeNode* root) { if (root == nullptr) return; deleteTree(root->left); deleteTree(root->right); delete root; } }; int main() { Solution sol; // 示例输入 vector<int> preorder = {3, 9, 20, 15, 7}; vector<int> inorder = {9, 3, 15, 20, 7}; // 构建二叉树 TreeNode* root = sol.buildTree(preorder, inorder); // 打印前序遍历结果以验证是否正确 cout << "构建的二叉树前序遍历结果: "; sol.preorderPrint(root); cout << endl; // 释放内存 sol.deleteTree(root); return 0; } ``` --- ## 📌 编译与运行说明(适用于 Visual Studio) 1. 打开 Visual Studio 2. 创建一个 **C++ 控制台应用程序(Console Application)** 3. 删除默认生成的代码内容 4. 将上面的代码粘贴到 `.cpp` 文件中(如 `main.cpp`) 5. 确保你的编译器支持 **C++20**,因为使用了 `<ranges>` 和范围查找 - VS 2022 及以上版本支持 C++20 6. 按 `Ctrl + F5` 或点击 **“本地 Windows 调试器”** 运行程序 --- ## 🧾 输出结果示例 ``` 构建的二叉树前序遍历结果: 3 9 null null 20 15 null null 7 null null ``` 说明构建成功,结构如下: ``` 3 / \ 9 20 / \ 15 7 ``` --- ## 🧠 代码解释 - `preorder[0]` 是当前子树的根节点。 - 在 `inorder` 中找到该根节点,左边就是左子树,右边就是右子树。 - 根据左子树大小,划分 `preorder` 中的左右子树。 - 递归构造左右子树。 - 最后返回构造好的当前子树根节点。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值