UVA 679 - Dropping Balls

本文详细介绍了如何通过设置二进制树中的开关来预测小球在完全二叉树中从根节点到叶节点的移动路径。通过模拟不同小球的移动过程,展示了小球在经过节点时开关状态的变化,并最终确定小球停止的位置。适用于理解二叉树结构和路径查找算法。

 

A number ofKballs are dropped one by one from the root of a fully binary tree structure FBT. Each time the ball being dropped first visits a non-terminal node. It then keeps moving down, either follows the path of the left subtree, or follows the path of the right subtree, until it stops at one of the leaf nodes of FBT. To determine a ball's moving direction a flag is set up in every non-terminal node with two values, eitherfalseortrue. Initially, all of the flags arefalse. When visiting a non-terminal node if the flag's current value at this node isfalse, then the ball will first switch this flag's value, i.e., from thefalseto thetrue, and then follow the left subtree of this node to keep moving down. Otherwise, it will also switch this flag's value, i.e., from thetrueto thefalse, but will follow the right subtree of this node to keep moving down. Furthermore, all nodes of FBT are sequentially numbered, starting at 1 with nodes on depth 1, and then those on depth 2, and so on. Nodes on any depth are numbered from left to right.

 


For example, Fig. 1 represents a fully binary tree of maximum depth 4 with the node numbers 1, 2, 3, ..., 15. Since all of the flags are initially set to befalse, the first ball being dropped will switch flag's values at node 1, node 2, and node 4 before it finally stops at position 8. The second ball being dropped will switch flag's values at node 1, node 3, and node 6, and stop at position 12. Obviously, the third ball being dropped will switch flag's values at node 1, node 2, and node 5 before it stops at position 10.

 

 


Fig. 1: An example of FBT with the maximum depth 4 and sequential node numbers.

 

 


Now consider a number of test cases where two values will be given for each test. The first value isD, the maximum depth of FBT, and the second one isI, theIthball being dropped. You may assume the value ofIwill not exceed the total number of leaf nodes for the given FBT.

Please write a program to determine the stop positionPfor each test case.

 


For each test cases the range of two parametersDandIis as below:

 

\begin{displaymath}2 \le D \le 20, \mbox{ and } 1 \le I \le 524288.\end{displaymath}

 

 

 

Input

Containsl+2 lines.


Line 1 		 I the number of test cases 
Line 2 		 
test case #1, two decimal numbers that are separatedby one blank 
... 		 		 
Line k+1 
test case #k 
Line l+1 
test case #l 
Line l+2 -1 		 a constant -1 representing the end of the input file

 

Output

Containsllines.


Line 1 		 the stop position P for the test case #1 
... 		 
Line k the stop position P for the test case #k 
... 		 
Line l the stop position P for the test case #l

 

Sample Input

 

5
4 2
3 4
10 1
2 2
8 128
-1

 

Sample Output

12
7
512
3
255

 

 

本题必需找到数学规律(只模拟最后一个小球),而不能用模拟法,否则超时

 

#define RUN
#ifdef RUN

#include<stdio.h>
int main() {

#ifndef ONLINE_JUDGE
	freopen("679.in", "r", stdin);
	freopen("679.out", "w", stdout); 
#endif

	int cnt;
	int D, I;
  
	scanf("%d", &cnt);

	for(int t=0; t<cnt; t++){
		scanf("%d%d", &D, &I);

		//指向编号为k的小球
		int k = 1;

		//直接模拟最后一个小球的路线
		for(int i = 0; i < D-1; i++)
			//I既代表了第I个小球,又表示了第I次经过编号为k的小球
			//根据经过次数I的奇偶性判断下一个经过小球的编号k'
			//和经过小球k'的次数I'

			// 经过k编号小球奇数次则向左走到编号为2*k的小球
			// 并更新经过2*k小球的次数为(I+1)/2
			if(I%2) { k = k*2; I = (I+1)/2; }
			// 经过k编号小球偶数次则向右走到编号为2*k+1的小球
			// 并更新经过2*k+1小球的次数为I/2
			else { k = k*2+1; I /= 2; }

		printf("%d\n", k);
	}

	return 0;
}

#endif



 

 

 

模拟所有小球,超时

 

//#define RUN
#ifdef RUN

#include<stdio.h>
#include<string.h>
//最大深度
const int MAXD = 20;
//最大节点个数2^MAXD-1
int s[1<<MAXD];
int main() {

#ifndef ONLINE_JUDGE
	freopen("679.in", "r", stdin);
	freopen("679.out", "w", stdout); 
#endif

  int cnt;
  int D, I;
  scanf("%d", &cnt);

  for(int t=0; t<cnt; t++){
	scanf("%d%d", &D, &I);
	// 开关
	memset(s, 0, sizeof(s));
	/*
	for(int j=0; j<5; j++){
		printf("%d", s[j]);
	}
	printf("\n");
	*/
	int k, n = (1<<D)-1;
	for(int i = 0; i < I; i++) {
		k = 1;
		for(;;) {
		//开关转换
		s[k] = !s[k];
		//根据开关状态选择下落方向
		k = s[k] ? k*2 : k*2+1;

		//已经落出界了
		if(k > n) break;
		}
	}
	//出界前的叶子编号
	printf("%d\n", k/2);
  }

  return 0;
}

#endif



 

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值