思路不难,关键是如何写出结构清晰的代码,另外注意到的就是用到的frequencies数组来使得复杂度由暴力的O(n2)到O(n)
package Moderate;
import java.util.Random;
/**
* The Game of Master Mind is played as follows:
The computer has four slots containing balls that are red (R ), yellow (Y), green (G) or blue (B). For example, the computer might have RGGB (e.g., Slot #1 is red, Slots #2 and #3 are green, Slot #4 is blue).
You, the user, are trying to guess the solution. You might, for example, guess YRGB.When you guess the correct color for the correct slot, you get a “hit”. If you guess a color that exists but is in the wrong slot, you get a “pseudo-hit”. For example, the guess YRGB has 2 hits and one pseudo hit.
For each guess, you are told the number of hits and pseudo-hits. Write a method that, given a guess and a solution, returns the number of hits and pseudo hits.
译文:
Master Mind游戏规则如下:
4个槽,里面放4个球,球的颜色有4种,红(R ),黄(Y),绿(G),蓝(B)。比如, 给出一个排列RGGB,表示第一个槽放红色球,第二和第三个槽放绿色球,第四个槽放蓝色球。
你要去猜这个排列。比如你可能猜排列是:YRGB。当你猜的颜色是正确的,位置也是正确的, 你就得到一个hit,比如上面第3和第4个槽猜的和真实排列一样(都是GB),所以得到2个hit。 如果你猜的颜色在真实排列中是存在的,但位置没猜对,你就得到一个pseudo-hit。比如, 上面的R,猜对了颜色,但位置没对,得到一个pseudo-hit。
对于你的每次猜测,你会得到两个数:hits和pseudo-hits。写一个函数, 输入一个真实排列和一个猜测,返回hits和pseudo-hits。
*
*/
public class S17_5 {
public static class Result {
public int hits;
public int pseudoHits;
public Result(int h, int p) {
hits = h;
pseudoHits = p;
}
public Result() {
}
public String toString() {
return "(" + hits + ", " + pseudoHits + ")";
}
};
public static int code(char c) {
switch (c) {
case 'B':
return 0;
case 'G':
return 1;
case 'R':
return 2;
case 'Y':
return 3;
default:
return -1;
}
}
public static int MAX_COLORS = 4;
public static Result estimate(String guess, String solution) {
if (guess.length() != solution.length()) return null;
Result res = new Result();
int[] frequencies = new int[MAX_COLORS];
/* Compute hits and built frequency table */
for (int i = 0; i < guess.length(); i++) {
if (guess.charAt(i) == solution.charAt(i)) {
res.hits++;
} else {
/* Only increment the frequency table (which will be used for pseudo-hits) if
* it's not a hit. If it's a hit, the slot has already been "used." */
int code = code(solution.charAt(i));
if (code >= 0) {
frequencies[code]++; // 把答案的分布存在frequencies数组中
}
}
}
/* Compute pseudo-hits */
for (int i = 0; i < guess.length(); i++) {
int code = code(guess.charAt(i));
if (code >= 0 && frequencies[code] > 0 && guess.charAt(i) != solution.charAt(i)) {
res.pseudoHits++;
frequencies[code]--;
}
}
return res;
}
/************************** TEST CODE **********************************/
public static char letterFromCode(int k) {
switch (k) {
case 0:
return 'B';
case 1:
return 'G';
case 2:
return 'R';
case 3:
return 'Y';
default:
return '0';
}
}
public static Result estimateBad(String g, String s) {
char[] guess = g.toCharArray();
char[] solution = s.toCharArray();
int hits = 0;
for (int i = 0; i < guess.length; i++) {
if (guess[i] == solution[i]) {
hits++;
solution[i] = '0';
guess[i] = '0';
}
}
int pseudohits = 0;
for (int i = 0; i < guess.length; i++) {
if (guess[i] != '0') {
for (int j = 0; j < solution.length; j++) {
if (solution[j] != '0') {
if (solution[j] == guess[i]) {
pseudohits++;
solution[j] = '0';
break;
}
}
}
}
}
return new Result(hits, pseudohits);
}
public static String randomString() {
int length = 4;
char[] str = new char[length];
Random generator = new Random();
for (int i = 0; i < length; i++) {
int v = generator.nextInt(4);
char c = letterFromCode(v);
str[i] = c;
}
return String.valueOf(str);
}
public static boolean test(String guess, String solution) {
Result res1 = estimate(guess, solution);
Result res2 = estimateBad(guess, solution);
if (res1.hits == res2.hits && res1.pseudoHits == res2.pseudoHits) {
return true;
} else {
System.out.println("FAIL: (" + guess + ", " + solution + "): " + res1.toString() + " | " + res2.toString());
return false;
}
}
public static boolean testRandom() {
String guess = randomString();
String solution = randomString();
return test(guess, solution);
}
public static boolean test(int count) {
for (int i = 0; i < count; i++) {
if (!testRandom()) {
return true;
}
}
return false;
}
/********************** END TEST CODE ************************/
public static void main(String[] args) {
test(1000);
}
}

本文详细介绍了MasterMind游戏的算法实现过程,通过一种高效的方法计算玩家猜测与正确答案之间的匹配程度,包括直接命中(hit)和颜色匹配(pseudo-hit)的数量。文章提供了完整的Java代码示例,并对比了一种次优解法。
1456

被折叠的 条评论
为什么被折叠?



