>library(mvstats)
> X2<-read.table("clipboard",header=F)
> dim(X2)[1] 13 18
> PCA2<-princomp(X2)
Error in princomp.default(X2) :
'princomp' can only be used with more units than variables
> PCA2<-princomp(X)
> summary(PCA2)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
Standard deviation 52.8384089 42.3366098 25.8922359 19.19450703 17.32100045
Proportion of Variance 0.4490814 0.2883087 0.1078362 0.05926244 0.04825825
Cumulative Proportion 0.4490814 0.7373901 0.8452263 0.90448875 0.95274699
Comp.6 C

本文介绍了如何使用R语言进行主成分分析。通过加载mvstats库并读取数据,进行PCA以降低数据维度。
最低0.47元/天 解锁文章
3691

被折叠的 条评论
为什么被折叠?



