题意:给定n个数,表示每个人想要的礼物种类,相邻的人礼物种类不能有重复的礼物种类,1和n相邻
问,最少需要多少种类的礼物才能满足所有人的要求
思路:二分构造。自己只想到了偶数的情况下,最少需要的礼物数是相邻值最大的和
奇数情况下,分配策略是,编号为偶数的人,尽量取种类编号靠前的数,编号为奇数的人,尽量取种类编号靠后的数。
奇数情况我始终想不出来,而lrj的训练指南说:"不难发现,最优的分配策略是...",ORZ...
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define inf 0x3f3f3f3f
const int maxn = 100010;
int left[maxn],right[maxn],vis[maxn];
int n,l,r,x,y;
int find(int p)
{
int i,j;
memset(left,0,sizeof(left));
memset(right,0,sizeof(right));
x = vis[1];
left[1] = x;
y = p - x;
right[1] = 0;
for(i = 2; i <= n; i ++)
{
if(i%2)
{
right[i] = min(vis[i],y - right[i-1]);//尽量取右边
left[i] = vis[i] - right[i];
}
else
{
left[i] = min(vis[i],x - left[i-1]);//尽量取左边
right[i] = vis[i] - left[i];
}
}
if(left[n] == 0)
return 1;
return 0;
}
int main()
{
int i,j,m;
while(scanf("%d",&n),n!=0)
{
l = r = 0;
memset(vis,0,sizeof(vis));
for(i = 1; i <= n; i ++)
scanf("%d",&vis[i]);
vis[n+1] = vis[1];
if(n == 1)
{
printf("%d\n",vis[1]);//特判为1的情况
continue;
}
for(i = 1; i <= n; i ++)
l = max(l,vis[i]+vis[i+1]);
if(n%2)
{
for(i = 1; i <= n; i ++)
r = max(r,vis[i]*3);
while(l < r)
{
m = l + (r-l)/2;
if(find(m))
r = m;
else
l = m+1;
}
}
printf("%d\n",l);
}
return 0;
}