Recently Luba learned about a special kind of numbers that she calls beautiful numbers. The number is called beautiful iff its binary representation consists of k + 1 consecutive ones, and then k consecutive zeroes.
Some examples of beautiful numbers:
- 12 (110);
- 1102 (610);
- 11110002 (12010);
- 1111100002 (49610).
More formally, the number is beautiful iff there exists some positive integer k such that the number is equal to (2k - 1) * (2k - 1).
Luba has got an integer number n, and she wants to find its greatest beautiful divisor. Help her to find it!
The only line of input contains one number n (1 ≤ n ≤ 105) — the number Luba has got.
Output one number — the greatest beautiful divisor of Luba's number. It is obvious that the answer always exists.
3
1
992
496 题意:找到能够满足整除n的最大的漂亮数(漂亮数的定义就是十进制数转为二进制时,有k+1个1和k个0) 思路:打表。。。
#include<stdio.h> #include<math.h> #include<stdlib.h> #define inf 0x3f3f3f int main() { int num[10]; int k,i,n,max ; for(i = 0; i < 8; i ++) { int sum = 0; for(k = 2*i; k >= i; k --) { sum += pow(2,k); } num[i] = sum; } while(scanf("%d",&n)!=EOF) { max = -inf; for(i = 0; i < 8; i ++) { if(n%num[i] == 0) { if(num[i] > max) max = num[i]; } } printf("%d\n",max); } return 0; }
本文介绍了一种通过预计算特定模式的数值(即漂亮数),来高效找出一个给定整数的最大漂亮除数的方法。漂亮数被定义为二进制表示中包含k+1个连续1和k个连续0的整数。
1320

被折叠的 条评论
为什么被折叠?



