tf.variable_scope和tf.name_scope的区别

本文探讨了TensorFlow中tf.variable_scope与tf.name_scope的区别,通过实例演示了如何使用这两种作用域来管理变量命名,强调了tf.variable_scope可以统一管理tf.get_variable与tf.Variable两种变量的命名,而tf.name_scope仅能作用于tf.Variable。
部署运行你感兴趣的模型镜像

tf.variable_scope可以让变量有相同的命名,包括tf.get_variable得到的变量,还有tf.Variable的变量

tf.name_scope可以让变量有相同的命名,只是限于tf.Variable的变量

例子1:

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
 
with tf.variable_scope('V1'):
	a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.variable_scope('V2'):
	a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	print a1.name
	print a2.name
	print a3.name
	print a4.name

输出:
V1/a1:0
V1/a2:0
V2/a1:0
V2/a2:0

例子2:

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
 
with tf.name_scope('V1'):
	a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
	a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	print a1.name
	print a2.name
	print a3.name
	print a4.name

报错:Variable a1 already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:

例子2修改后:

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
 
with tf.name_scope('V1'):
	# a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
	# a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	# print a1.name
	print a2.name
	# print a3.name
	print a4.name

输出:
V1/a2:0
V2/a2:0

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值