import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import matplotlib.pyplot as plt
dtype = torch.FloatTensor
sentences = [ "i like dog", "i like cat", "i like animal",
"dog cat animal", "apple cat dog like", "dog fish milk like",
"dog cat eyes like", "i like apple", "apple i hate",
"apple i movie book music like", "cat dog hate", "cat dog like"]
word_sequence = " ".join(sentences).split()
word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)}
batch_size = 20
embedding_size = 2
voc_size = len(word_list)
def random_batch(data, size):
random_inputs = []
random_labels = []
random_index = np.random.choice(range(len(data)), size, replace=False)
for i in random_index:
random_inputs.append(np.eye(voc_size)[data[i][0]])
random_labels.append(data[i][1])
return random_inputs, random_labels
skip_grams = []
for i in range(1, len(word_sequence) - 1):
target = word_dict[word_sequence[i]]
context = [word_dict[word_sequence[i - 1]], word_dict[word_sequence[i + 1]]]
for w in context:
skip_grams.append([target, w])
class Word2Vec(nn.Module):
def __init__(self):
super(Word2Vec, self).__init__()
self.W = nn.Parameter(-2 * torch.rand(voc_size, embedding_size) + 1).type(dtype)
self.WT = nn.Parameter(-2 * torch.rand(embedding_size, voc_size) + 1).type(dtype)
def forward(self, X):
hidden_layer = torch.matmul(X, self.W)
output_layer = torch.matmul(hidden_layer, self.WT)
return output_layer
model = Word2Vec()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(5000):
input_batch, target_batch = random_batch(skip_grams, batch_size)
input_batch = Variable(torch.Tensor(input_batch))
target_batch = Variable(torch.LongTensor(target_batch))
optimizer.zero_grad()
output = model(input_batch)
loss = criterion(output, target_batch)
if (epoch + 1)%1000 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
loss.backward()
optimizer.step()
for i, label in enumerate(word_list):
W, WT = model.parameters()
x,y = float(W[i][0]), float(W[i][1])
plt.scatter(x, y)
plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom')
plt.show()
Epoch: 1000 cost = 2.263604
Epoch: 2000 cost = 2.092835
Epoch: 3000 cost = 1.889603
Epoch: 4000 cost = 2.024243
Epoch: 5000 cost = 1.588786
