递归相关题目
文章目录
- 递归相关题目
- 一、[70. 爬楼梯](https://leetcode-cn.com/problems/climbing-stairs/)
- 二、[22. 括号生成](https://leetcode-cn.com/problems/generate-parentheses/)
- 三、[226. 翻转二叉树](https://leetcode-cn.com/problems/invert-binary-tree/)
- 四、[98. 验证二叉搜索树](https://leetcode-cn.com/problems/validate-binary-search-tree/)
- 五、[104. 二叉树的最大深度](https://leetcode-cn.com/problems/maximum-depth-of-binary-tree/)
- 六、[111. 二叉树的最小深度](https://leetcode-cn.com/problems/minimum-depth-of-binary-tree/)
- 七、[236. 二叉树的最近公共祖先](https://leetcode-cn.com/problems/lowest-common-ancestor-of-a-binary-tree/)
- 八、[105. 从前序与中序遍历序列构造二叉树](https://leetcode-cn.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/)
- 九、[77. 组合](https://leetcode-cn.com/problems/combinations/)
- 十、[46. 全排列](https://leetcode-cn.com/problems/permutations/)
- 十一、[47. 全排列 II](https://leetcode-cn.com/problems/permutations-ii/)
一、70. 爬楼梯
解法一:递归+记忆化搜索
public int climbStairs(int n) {
if (n<2) return n;
int[] a = new int[n+1];
a[1] = 1;
a[2] = 2;
return climbStairs(n, a);
}
private int climbStairs(int n, int[] a) {
if (a[n]!=0) return a[n];
a[n] = climbStairs(n-1, a) + climbStairs(n-2, a);
return a[n];
}
二、22. 括号生成
解法一:递归
public List<String> generateParenthesis(int n) {
List<String> res = new ArrayList<>();
solve(0, 0, n, new StringBuilder(), res);
return res;
}
private void solve(int left, int right, int n, StringBuilder sb, List<String> res) {
if (left==n) {
res.add(sb.toString());
return;
}
if (right<n) {
sb.append('(');
solve(left, right+1, n, sb, res);
sb.deleteCharAt(sb.length()-1);
}
if (left<right) {
sb.append(')');
solve(left+1, right, n, sb, res);
sb.deleteCharAt(sb.length()-1);
}
}
三、226. 翻转二叉树
3.1 解法一:递归,原地翻转
public TreeNode invertTree(TreeNode root) {
return solve(root);
}
private TreeNode solve(TreeNode node) {
if (node==null) return null;
TreeNode left = solve(node.right);
node.right = solve(node.left);
node.left = left;
return node;
}
优化:
public TreeNode invertTree(TreeNode root) {
if (root==null) return null;
TreeNode left = invertTree(root.right);
root.right = invertTree(root.left);
root.left = left;
return root;
}
四、98. 验证二叉搜索树
4.1 中序遍历+递归
private Long pre = Long.MIN_VALUE;
public boolean isValidBST(TreeNode root) {
if (root==null) return true;
if (!isValidBST(root.left)) {
return false;
}
if (root.val<=pre) {
return false;
}
pre = (long)root.val;
return isValidBST(root.right);
}
五、104. 二叉树的最大深度
5.1 递归
public int maxDepth(TreeNode root) {
return solve(root, 0);
}
private int solve(TreeNode node, int n) {
if (node==null) {
return n;
}
return Math.max(solve(node.left, n+1), solve(node.right, n+1));
}
六、111. 二叉树的最小深度
5.2 解法一:递归
public int minDepth(TreeNode root) {
if (root==null) return 0;
if (root.left==null && root.right==null) return 1;
int depth = Integer.MAX_VALUE;
if (root.left!=null) {
depth = Math.min(minDepth(root.left), depth);
}
if (root.right!=null) {
depth = Math.min(minDepth(root.right), depth);
}
return depth + 1;
}
5.2 解法二:BFS
public int minDepth(TreeNode root) {
if (root==null) return 0;
Deque<TreeNode> deque = new LinkedList<>();
deque.addLast(root);
int n = 1;
while (!deque.isEmpty()) {
int size = deque.size();
for (int i=0; i<size; i++) {
TreeNode node = deque.pop();
if (node.left==null && node.right==null) return n;
if (node.left!=null) deque.addLast(node.left);
if (node.right!=null) deque.addLast(node.right);
}
n++;
}
return n;
}
七、236. 二叉树的最近公共祖先
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root==null || root==p || root ==q) {
return root;
}
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
if (left==null && right==null) {
return null;
}else if (left!=null && right!=null) {
return root;
}else if (left!=null && right==null) {
return left;
}else {
return right;
}
}
八、105. 从前序与中序遍历序列构造二叉树
8.1 递归
public TreeNode buildTree(int[] preorder, int[] inorder) {
return buildTree(preorder, inorder, 0, preorder.length-1, 0, inorder.length-1);
}
private TreeNode buildTree(int[] preorder, int[] inorder, int p1, int p2, int i1, int i2) {
if (p1>p2) return null;
TreeNode root = new TreeNode(preorder[p1]);
int k = -1;
for (int x=i1; x<=i2; x++) {
if (inorder[x]==preorder[p1]) {
k = x;
break;
}
}
/** 通过前序的节点,在中序遍历中可以确定左子树的长度 */
int num = k - i1;
root.left = buildTree(preorder, inorder, p1+1, p1+num, i1, i1+num-1);
root.right = buildTree(preorder, inorder, p1+num+1, p2, i1+num+1, i2);
return root;
}
8.2 使用哈希表进行优化
private Map<Integer, Integer> map = new HashMap<>();
public TreeNode buildTree(int[] preorder, int[] inorder) {
for (int i=0; i<inorder.length; i++) {
map.put(inorder[i], i);
}
return buildTree(preorder, inorder, 0, preorder.length-1, 0, inorder.length-1);
}
private TreeNode buildTree(int[] preorder, int[] inorder, int p1, int p2, int i1, int i2) {
if (p1>p2) return null;
TreeNode root = new TreeNode(preorder[p1]);
/*int k = -1;
for (int x=i1; x<=i2; x++) {
if (inorder[x]==preorder[p1]) {
k = x;
break;
}
}*/
int k = map.get(preorder[p1]);
/** 通过前序的节点,在中序遍历中可以确定左子树的长度 */
int num = k - i1;
root.left = buildTree(preorder, inorder, p1+1, p1+num, i1, i1+num-1);
root.right = buildTree(preorder, inorder, p1+num+1, p2, i1+num+1, i2);
return root;
}
九、77. 组合
9.1 递归
public List<List<Integer>> combine(int n, int k) {
List<List<Integer>> result = new ArrayList<>();
solve(n, k, 0, 0, new Integer[k], result);
return result;
}
private void solve(int n, int k, int i, int l, Integer[] a, List<List<Integer>> list) {
if (l>=k) {
list.add(Arrays.asList(a.clone()));
return;
}
for (int j=i; j<=n-k+l; j++) {
a[l] = j+1;
solve(n, k, j+1, l+1, a, list);
}
}
十、46. 全排列
10.1 递归
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> resList = new ArrayList<>();
Set<Integer> set = new HashSet<>();
int k = nums.length;
solve(0, k, new Integer[k], resList, nums, set);
return resList;
}
private void solve(int level, int k, Integer[] a, List<List<Integer>> list, int[] nums, Set<Integer> set) {
if (level>=k) {
list.add(Arrays.asList(a.clone()));
return;
}
for (int j=0; j<nums.length; j++) {
if (set.contains(nums[j])) continue;
set.add(nums[j]);
a[level] = nums[j];
solve(level+1, k, a, list, nums, set);
set.remove(nums[j]);
}
}
十一、47. 全排列 II
解法一:先排序,再递归处理
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> res =new ArrayList<>();
int n = nums.length;
Arrays.sort(nums);
solve(0, n, nums, res, new Integer[n]);
return res;
}
private void solve(int l, int n, int[] nums, List<List<Integer>> res, Integer[] a) {
if (l>=n) {
res.add(Arrays.asList(a.clone()));
return;
}
for (int j=0;j<nums.length;) {
a[l] = nums[j];
int[] nextNums = createNextNums(nums, j);
solve(l+1, n, nextNums, res, a);
j++;
while (j<nums.length && nums[j]==nums[j-1]) j++;
}
}
private int[] createNextNums(int[] nums, int j) {
int[] a = new int[nums.length-1];
int i=0;
for (int k=0; k<nums.length; k++) {
if (k==j) continue;
a[i++] = nums[k];
}
return a;
}
这篇博客探讨了多种使用递归解决LeetCode算法问题和二叉树相关题目,包括爬楼梯、括号生成、翻转二叉树、验证二叉搜索树、二叉树的深度计算以及全排列等。文中详细阐述了不同问题的递归解法,并提及了记忆化搜索、中序遍历和优化技巧。
1169

被折叠的 条评论
为什么被折叠?



