HDU 3272 - Mission Impossible(计算几何)
ACM
题目地址:
HDU 3272 - Mission Impossible
题意:
在二维平面上,给你一个初始位置(hx,hy),你需要获得四种资源,A在x轴上任意位置,B在y轴上任意位置,C、D位置会告诉你。问获得四种资源后返回(hx,hy)最短要走多长。
分析:
三条线段与X、Y轴相交有三种情况:
- 与x,y都相交,此时最短距离为周长
- 仅与X或Y相交,这时枚举每条边,利用镜像对称算出距离,取最小值
- 与X和Y都不相交,这个比较不好想
我曾天真的以为只要枚举每条边,让它拐到中点就行...
可以分两种情况
第一种:
第二种:
第一种情况要枚举六次, 一条边负责去X轴另一个条负责取Y轴。
第二种情况要枚举三次,每条边的两上端点同时取X轴和Y轴。
代码:
/*
* Author: illuz <iilluzen[at]gmail.com>
* Blog: http://blog.youkuaiyun.com/hcbbt
* File: 3272.cpp
* Create Date: 2014-08-15 20:56:16
* Descripton:
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define repf(i,a,b) for(int i=(a);i<=(b);i++)
typedef long long ll;
const int N = 0;
struct Point {
double x;
double y;
} h, o, p[3];
double dis(const Point& a, const Point& b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
// calc h->a->b->h
double calc(int a, int b) {
double ret = dis(h, p[a]) + dis(p[a], p[b]) + dis(p[b], h);
double ha, ab, bh;
bool cx = 0, cy = 0;
if (h.x * p[a].x <= 0 || p[a].x * p[b].x <= 0 || p[b].x * h.x <= 0)
cx = 1;
if (h.y * p[a].y <= 0 || p[a].y * p[b].y <= 0 || p[b].y * h.y <= 0)
cy = 1;
if (cx == 0 && cy == 0) {
// 3
Point t1, t2;
t1.x = h.x;
t1.y = -h.y;
t2.x = -p[a].x;
t2.y = p[a].y;
ha = ret - dis(h, p[a]) + dis(t1, t2);
t1.x = p[b].x;
t1.y = -p[b].y;
t2.x = -p[a].x;
t2.y = p[a].y;
ab = ret - dis(p[a], p[b]) + dis(t1, t2);
t1.x = p[b].x;
t1.y = -p[b].y;
t2.x = -h.x;
t2.y = h.y;
bh = ret - dis(h, p[b]) + dis(t1, t2);
double ans = min(ha, min(ab, bh));
// 6
// ha->x ab->y
t1.x = p[a].x;
t1.y = -p[a].y;
t2.x = -p[a].x;
t2.y = p[a].y;
ans = min(ans, ret - dis(p[a], h) + dis(t1, h) - dis(p[a], p[b]) + dis(t2, p[b]));
// ha->x bh->y
t1.x = h.x;
t1.y = -h.y;
t2.x = -h.x;
t2.y = h.y;
ans = min(ans, ret - dis(p[a], h) + dis(p[a], t1) - dis(h, p[b]) + dis(t2, p[b]));
// ab->x ha->y
t1.x = p[a].x;
t1.y = -p[a].y;
t2.x = -p[a].x;
t2.y = p[a].y;
ans = min(ans, ret - dis(p[a], p[b]) + dis(t1, p[b]) - dis(p[a], h) + dis(t2, h));
// ab->x bh->y
t1.x = p[b].x;
t1.y = -p[b].y;
t2.x = -p[b].x;
t2.y = p[b].y;
ans = min(ans, ret - dis(p[a], p[b]) + dis(t1, p[a]) - dis(p[b], h) + dis(t2, h));
// bh->x ha->y
t1.x = h.x;
t1.y = -h.y;
t2.x = -h.x;
t2.y = h.y;
ans = min(ans, ret - dis(p[b], h) + dis(p[b], t1) - dis(h, p[a]) + dis(t2, p[a]));
// bh->x ab->y
t1.x = p[b].x;
t1.y = -p[b].y;
t2.x = -p[b].x;
t2.y = p[b].y;
ans = min(ans, ret - dis(h, p[b]) + dis(t1, h) - dis(p[b], p[a]) + dis(t2, p[a]));
ret = ans;
} else if (cx == 1 && cy == 0) {
Point tmp;
// tmp is x axis mirror of a
tmp.x = p[a].x;
tmp.y = -p[a].y;
ha = ret - dis(h, p[a]) + dis(h, tmp);
ab = ret - dis(p[a], p[b]) + dis(tmp, p[b]);
// tmp is x axis mirror of b
tmp.x = p[b].x;
tmp.y = -p[b].y;
bh = ret - dis(h, p[b]) + dis(h, tmp);
ret = min(ha, min(ab, bh));
} else if (cx == 0 && cy == 1) {
Point tmp;
// tmp is y axis mirror of a
tmp.x = -p[a].x;
tmp.y = p[a].y;
ha = ret - dis(h, p[a]) + dis(h, tmp);
ab = ret - dis(p[a], p[b]) + dis(tmp, p[b]);
// tmp is y axis mirror of b
tmp.x = -p[b].x;
tmp.y = p[b].y;
bh = ret - dis(h, p[b]) + dis(h, tmp);
ret = min(ha, min(ab, bh));
}
return ret;
}
int main() {
// ori
o.x = 0;
o.y = 0;
int t;
cin >> t;
while (cin >> p[0].x >> p[0].y >> p[1].x >> p[1].y >> h.x >> h.y) {
printf("%.2f\n", calc(0, 1));
}
return 0;
}