from keras.layers import Input, Dense
from keras.models import Model
from keras.datasets import mnist
import numpy as np
# 加载mnist数据集并对其进行处理
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
np.prod(x_test.shape[1:])))
print(x_train.shape)
print(x_test.shape)
#对mnist数据集加噪
def noisy(image):
print('min {} , max {} and mean {}'.format(np.min(image), np.max(image), np.mean(image)))
p
图像去噪-MNIST
最新推荐文章于 2025-07-10 11:25:30 发布

最低0.47元/天 解锁文章
618

被折叠的 条评论
为什么被折叠?



