2024最强SoTA行人重识别(ReID)项目实战

本文聚焦2024行人重识别模型,先拆分问题,将pipeline分为行人检测、MOT、Search engine、Person Reid四大模块;接着调研核心算法确定baseline;然后改进模型,虽指标提升有限但给出改进意见;最后介绍落地项目,包括GUI设计、模型转换等,还给出简单的安装和运行步骤。
该文章已生成可运行项目,

2024年SoTA 行人重识别模型复现和提升最后再加前端展示

Person Reid(行人重识别2024SoTA)

任务目的: 使用一张人的全身照,在视频or图像中找到这个人出现的时刻。

1. 问题拆分:

我们如果要落地一个行人重识别的应用项目.我们需要按照pipeline的任务模块将其拆解。简单来说,如图所示,对于图像来说,我们的一般流程是先行人检测,将目标行人的位置提取出来,进行裁剪后面送到reid模型中。对于视频来说,特别是背景稳定的视频如监控,不同的点在于,我们可以使用MOT(多目标跟踪)其是使用滤波位置等信息采用低计算量的方式跟踪一个人。我们在这里就可以设计一个缓存,对于跟踪的一个人只去调reid模型一次(这个可以设置超产),这里其实就是工业界常用的抓拍机策略。

  • For image: 行人检测-> person reid -> vector search -> matching.
  • For video: 行人检测 -> 多目标跟踪(MOT) -> person reid -&
本文章已经生成可运行项目
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

热血小蚂蚁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值