Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3 1 2 10 0 0 0
Sample Output
2 5答案:#include <stdio.h>int main(int argc, char* argv[])
{int A, B, n;
int res[100], k = 0;
int r[100];while (true)
{
scanf("%d %d %d", &A, &B, &n);
if (A ==0&&B==0&&n==0)
break;
if (n == 1 || n == 2)
res[k++] = 1;
else
{
r[1] = 1, r[2] = 1;
for (int i = 3; i < 100; ++i)
{
r[i] = (A*r[i-1]+B*r[i-2])%7;
if (r[i-1] == 1 && r[i] == 1)
break;
}
n = n%(i-2);
if (n == 0)
res[k++] = r[i-2];
else
res[k++] = r[n];
}
}
for (int i = 0; i < k; ++i)
printf("%d/n", res[i]);return 0;
}