斐波那契数列,又称黄金分割数列 [0,1,1,2,3,5,8,13,21..]
写了个递归函数, 计算第n项值
def func(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return func(n-2) + func (n-1)
</pre>发现n > 30 之后,执行时间非常长,于是想知道具体的代码执行时间,</p><p><h2>方法1:timeit 模块</h2><div><pre name="code" class="plain">>>> from timeit import Timer
>>> t1 = Timer("func(30)", "from __main__ import func")
>>> t2 = Timer("func(35)", "from __main__ import func")
func 参数分别为30,35执行一次函数耗费时间,
>>> t1.timeit(1)
0.5481270925380386
>>> t2.timeit(2)
12.405652104510068
func 参数分别为30,35执行3次函数耗费时间,timeit 如不加参数,默认运行1百万次
>>> t1.timeit(3)
1.6510642680780165
>>> t2.timeit(3)
18.92313576122126
如执行3次t1. timeit(1) 结果
>>> t1.repeat(3, 1)
[0.5405368141019835, 0.5502100386017901, 0.5496847882153588]
方法2: time 模块
from time import clock
def func(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return func(n-2) + func (n-1)
if __name__ == '__main__':
start = clock()
print func(40)
finish = clock()
print (finish-start)