ip_defrag函数
struct sk_buff *ip_defrag(struct sk_buff *skb, u32 user)
{
}
ip_find函数
static inline struct ipq *ip_find(struct iphdr *iph, u32user)
{
}
http://hi.baidu.com/liulife/blog/item/4f0564ef9cbfd413fcfa3c09.html
1. 概述
在linux源代码中,ip分片重组的全部程序几乎都在都在/net/ipv4/ip_fragment.c
文件中。其对外提供一个函数接口ip_defrag()。其函数原型如下:
struct sk_buff *ip_defrag(struct sk_buff *skb)
众所周知,网络数据报在linux的网络堆栈中是以sk_buff的结构传送的,ip_defrag()的
功能就是接受分片的数据包(sk_buff),并试图进行组合,当完整的包组合好时,将新的
sk_buff返还,否则返回一个空指针。
此函数在其他文件中的调用如下:
ip层接收主函数为ip_rcv()(/net/ipv4/ip_input.c),任何IP包都需经过此函数处理。
如果此包是发往本机,则调用ip_local_deliver()函数(/net/ipv4/ip_input.c)进行
处理,一般的系统碎片只有在到达最终目的的时候才进行重组(尽管在传输过程中可
能被进一步分成更小的片)。在ip_local_deliver()中我们可发现如下代码:
if (sysctl_ip_always_defrag == 0 && /*编译时未设置提前组装*/
(iph->frag_off & htons(IP_MF|IP_OFFSET))) { /*判断是否是分片包*/
skb = ip_defrag(skb); /*条件满足,进行组装*/
if (!skb) /*若组装好则进行下一步处理,出错
return 0; 或仍未组装完返回*/
iph = skb->nh.iph; /*重新定位ip头的指针*/
}
iph->frag_off只有在设置MF(more fragment)或offset!=0才意味着是分片包,因此
此处的检验理所当然,但为什么判断sysctl_ip_always_defrag == 0呢?
在看ip_rcv()时我们应该已经注意到在刚进行了版本号,长度,校验和等判断后,有如下
一段代码:
if (sysctl_ip_always_defrag != 0 &&
iph->frag_off & htons(IP_MF|IP_OFFSET)) {
skb = ip_defrag(skb);
if (!skb)
return 0;
iph = skb->nh.iph;
ip_send_check(iph);
}
即如果sysctl_ip_always_defrag==1的话,ip_defrag()的调用位置将有变化,对任何
进来的IP分片都要进行重组,可以想像,如果此机器作路由器的话,将对所有的分片
组装好后,才会进行转发。此举一般是没有必要的。这个值可以通过sysctl命令动态
设置,用sysctl -a可以看到在一般的系统中,此值被设为0:
#sysctl -a
......
net.ipv4.ip_always_defrag = 0
......
2. 关键数据结构(2.2系列)
每一个分片用ipfrag结构表示:
/* Describe an IP fragment. */
struct ipfrag {
int offset; /* offset of fragment in IP datagram */
int end; /* last byte of data in datagram */
int len; /* length of this fragment */
struct sk_buff *skb; /* complete received fragment */
unsigned char *ptr; /* pointer into real fragment data */
struct ipfrag *next; /* linked list pointers */
struct ipfrag *prev;
};
这些分片形成一个双向链表(在linux内核中,若需要使用链表,除非有特殊需要,否则推荐
双向链表,见document/CodingStyle),表示一个未组装完的分片队列(属于一个ip包)。
这个链表的头指针要放在ipq结构中:
/* Describe an entry in the "incomplete datagrams" queue. */
struct ipq {
struct iphdr *iph; /* pointer to IP header */
struct ipq *next; /* linked list pointers */
struct ipfrag *fragments; /* linked list of received fragments */
int len; /* total length of original datagram */
short ihlen; /* length of the IP header */
struct timer_list timer; /* when will this queue expire? */
struct ipq **pprev;
struct device *dev; /* Device - for icmp replies */
};
注意每个ipq保留了一个定时器(即struct timer_list timer;)。
ipq也会形成一个链表,它们是内核当前未组装完的所有IP包。为了便于查找,保留了一个
hash表:
#define IPQ_HASHSZ 64 struct ipq *ipq_hash[IPQ_HASHSZ]; #define ipqhashfn(id, saddr, daddr, prot) / ((((id) >> 1) ^ (saddr) ^ (daddr) ^ (prot)) & (IPQ_HASHSZ - 1)) Hash表 --------_____________ | 1 | | -------- ----------- ------------ ------------ | 2 | | ipq1 |---->| ipfrag1 |----->| ipfrag2 |------>....... -------- ------------ ------------- ------------ ...... | -------- // | 63 | ------------ ------------- ----------- -------- | ipq2 |---->| ipfrag1 |----->| ipfrag2 |------>....... ------------ ------------- ----------- | // ------------ ------------- ----------- | ipq3 |----> | ipfrag1 |---->| ipfrag2 |------>....... ------------ ------------- ----------- | // ........
每个IP包用如下四元组表示:(id,saddr,daddr,protocol),四个值都相同的碎片
保留在一个IPQ中,即可组装成一个完整的IP包。
3. 重要函数说明(2.2系列)
3.1 ip_defrag()
ip_defrag()是整个流程的入口,下面我们首先对ip_defrag()作一定的说明。
(1)为了防止因保留分片而造成内存消耗过大,linux设置了界限来防止这种情况,如果超过了
内存使用的上限,则清空内存中最老的队列(ipq).所用内存的大小保存在变量ip_frag_mem中,
当然,对它的读写都应是“原子”操作(atomic_sub,atomic_add,atomic_read,etc)。
其定义在文件ip_fragment.c前部:
atomic_t ip_frag_mem = ATOMIC_INIT(0); /* Memory used for fragments */
if (atomic_read(&ip_frag_mem) > sysctl_ipfrag_high_thresh)
ip_evictor();
ip_evicator的具体操作将在下文中描述。
(2)以id, saddr, daddr, protocol为标志检索是否已经建立了相应的ipq,若发现,则返回
ipq的指针,并重置定时器。
qp = ip_find(iph, skb->dst);
(3)此时有一个if/else对,其作用是:
如果ipq已经存在,则证明已经有同一个包的其他分片到达。检查此片是不是第一个分片(因为
分片到达顺序可能错乱),若是,将ip头信息和头长度保留在ipq结构中();
if (offset == 0) {
/* Fragmented frame replaced by unfragmented copy? */
if ((flags & IP_MF) == 0)
goto out_freequeue;
qp->ihlen = ihl;
memcpy(qp->iph, iph, (ihl + 8));
}
如果不存在,当然要建立一个了:
qp = ip_create(skb, iph);
if (!qp)
goto out_freeskb;
ip_create便是分配出一块内存,初始化这个ipq,并在hash表中登记。
到此为止ipq已经肯定存在了,不管是已经存在的,还是我们刚才生成的。
(4)对包的长度进行检测,如果超过了ip包的最大范围,则报警,并丢弃此包。jolt2
便是利用这点将window系统打瘫的。由于linux做了这种检查,所以基本免受其害。
(5)调节end值(数据的结尾位置),如果是最后一个包,则最终整个ip包的长度便可以知
道了,为了组装时方便,将其记录到ipq中。
/* Determine the position of this fragment. */
end = offset + ntohs(iph->tot_len) - ihl;
/* Is this the final fragment? */
if ((flags & IP_MF) == 0)
qp->len = end;
(6)接下来很长一段代码(line481-line586)便是定位这份分片在整个数据包中的位置。
如果分片之间有重合(恶意攻击和其他异常),则能归并便归并。这个问题我们将在后面
(常见碎片攻击中)详谈。
(7)此时我们已经知道这个分片的具体位置了。我们要生成一份新的ipfrag结构,并将其放到
我们刚才找到的正确位置上去。
tfp = ip_frag_create(offset, end, skb, ptr);
if (!tfp)
goto out_freeskb;
/* Insert this fragment in the chain of fragments. */
tfp->prev = prev;
tfp->next = next;
if (prev != NULL)
prev->next = tfp;
else
qp->fragments = tfp;
if (next != NULL)
next->prev = tfp;
(8)ip_done函数检查是否所有的分片已经到齐,如果到齐,则将其组装成一个新的sk_buff
(调用ip_glue),并最终返回到调用ip_defrag的地方。
if (ip_done(qp)) { /*全部到齐了么?*/
/* Glue together the fragments. */
skb = ip_glue(qp);
/* Free the queue entry. */
out_freequeue:
ip_free(qp); /*原有的ipq结构已经不需要了,释放。*/
out_skb:
return skb; /*组装完成,可以返回了*/
}
如果没有到齐,则返回NULL.
至此全部组装过程结束。
3.2 ip_evictor()
当分片所用的内存超过一定的上限时(sysctl_ipfrag_high_thresh)会调用ip_evicator以释放内存。
ip_evicator会找寻可清空的IPQ,并将其清空,直到到达到可用的下限(sysctl_ipfrag_low_thresh)
。
这个值在ip_fragment.c中按如下定义:
int sysctl_ipfrag_high_thresh = 256*1024;
int sysctl_ipfrag_low_thresh = 192*1024;
同样,用sysctl -a可可看到这两参数,同时可以动态修改。
#sysctl -a
......
net.ipv4.ipfrag_low_thresh = 196608
net.ipv4.ipfrag_high_thresh = 262144
......
理论上ip_evicator应该采用LRU算法,将最古老的IPQ清除。但目前linux(包括2.4.0)没有实现此功能
,只是将hash表按次序清空,这样的好处是简单易行。
3.3 ip_glue()
ip_glue()函数将负责将一个所有分片已经到齐的的IP包组合好。当这一步进行时,所有的分片已经
按顺序排好,并解决了所有的重叠问题。因此其流程相应很简单。
首先生成一个足够大的(足以容纳所有的分片包长度的总和)新的skbuff:
skb = dev_alloc_skb(len);
if (!skb)
goto out_nomem;
调整一些必要的指针后,就在一个while循环中依次将原有分片的内容用memcoy拷贝到新的skbuff中。
再进行一些指针调整后,过程结束,将新的skbuff返回。
3.4 ip_expire()
前面已经提到,每个ipq保留了一个定时器,当一定时间以后组装还没有完成,将清空此队列。
定时器的值保留在sysctl_ipfrag_time中:
int sysctl_ipfrag_time = IP_FRAG_TIME;
(在/include/net/ip.h中有#define IP_FRAG_TIME (30 * HZ) )
此值也可以用sysctl设置。