cf MemSQL start[c]up Round 1 A Square and Rectangles

A. Square and Rectangles
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given n rectangles. The corners of rectangles have integer coordinates and their edges are parallel to the Ox and Oy axes. The rectangles may touch each other, but they do not overlap (that is, there are no points that belong to the interior of more than one rectangle).

Your task is to determine if the rectangles form a square. In other words, determine if the set of points inside or on the border of at least one rectangle is precisely equal to the set of points inside or on the border of some square.

Input

The first line contains a single integer n (1 ≤ n ≤ 5). Next n lines contain four integers each, describing a single rectangle: x1y1x2y2(0 ≤ x1 < x2 ≤ 31400, 0 ≤ y1 < y2 ≤ 31400) — x1 and x2 are x-coordinates of the left and right edges of the rectangle, and y1 and y2are y-coordinates of the bottom and top edges of the rectangle.

No two rectangles overlap (that is, there are no points that belong to the interior of more than one rectangle).

Output

In a single line print "YES", if the given rectangles form a square, or "NO" otherwise.

Sample test(s)
input
5
0 0 2 3
0 3 3 5
2 0 5 2
3 2 5 5
2 2 3 3
output
YES
input
4
0 0 2 3
0 3 3 5
2 0 5 2
3 2 5 5
output
NO
这是一道简单的集合的题目,想不到啊,当时大师给我提示了,下来忘写了,现在补上,其实就只需要【判断三点就行了,首先是要保证这些矩形构成的图形的面积是个完全平方数,这是正方形的首要前提,2是要保证矩形的面积合起来要和外面得大图形相同,最后就是边长相等,这样就保证他是个正方形了。
下面是代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>

using namespace std;

const int inf=100000000;

struct square{
    int lx;
    int ly;
    int rx;
    int ry;
}s[10];

int main(){
     int n;
     while(scanf("%d",&n)!=EOF){
        __int64 area=0;//刚开始时写的int,貌似出问题了
        int mlx=inf,mrx=-inf;
        int mly=inf,mry=-inf;
           for(int i=1;i<=n;i++){
              scanf("%d%d%d%d",&s[i].lx,&s[i].ly,&s[i].rx,&s[i].ry);
                 mlx=min(mlx,s[i].lx);
                 mrx=max(mrx,s[i].rx);
                 mly=min(mly,s[i].ly);
                 mry=max(mry,s[i].ry);
                 area+=(s[i].rx-s[i].lx)*(s[i].ry-s[i].ly);
           }
           __int64 temp=sqrt(area);
           if(temp*temp!=area){//如果边长不是个平方数,肯定是 错的
                    cout<<"NO"<<endl;
            }
            else{
                 if((mrx-mlx)*(mry-mly)==area&&(mrx-mlx)==(mry-mly))
                      cout<<"YES"<<endl;
                  else
                      cout<<"NO"<<endl;
            }
     }
     return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值